122 research outputs found

    HSV Latency-Associated Transcript and Neuronal Apoptosis

    Get PDF
    Thompson and Sawtell report that the Promega Anti-PARP p85 antibody did not recognize cleaved PARP in mouse or rabbit cells in their experiments, and conclude that the results reported with this antibody by Perng et al. (1) are an artifact. The Promega antibody was generated against a peptide based on the sequence of human p85. Although the corresponding bovine sequence differs by two amino acids, the antibody reacts with both human and bovine p85 (2). The mouse and rat sequences for this region of p85 differ from the human sequence by a single amino acid that corresponds to one of the bovine amino acid differences. External testers have successfully stained mouse and rat p85 using Promega Anti-PARP p85 (2). Thus, the negative mouse results reported by Thompson and Sawtell are surprising, and call into question the validity of their negative rabbit results. Extracts that we prepared (Fig. 1) from rabbit skin cells induced to undergo apoptosis by staurosporin (lane RS-S) contained a band of approximately 85 kD that was recognized by Anti-PARP p85, and that comigrated with the p85 band induced in human Jurkat cells by staurosporin (lane Jurkat-S) or anti-Fas antibody (lane Jurkat-F). Clearly, then, the Promega antibody recognizes the rabbit cleaved PARP p85 protein, and the argument to the contrary by Thompson and Sawtell has no merit. Their negative mouse and rabbit results apparently stemmed from technical problems, a bad batch of antibody, or some other unknown factor

    Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage.

    Get PDF
    Age-related macular degeneration (AMD) ranks third among the leading causes of visual impairment with a blindness prevalence rate of 8.7%. Despite several treatment regimens, such as anti-angiogenic drugs, laser therapy, and vitamin supplementation, being available for wet AMD, to date there are no FDA-approved therapies for dry AMD. Substantial evidence implicates mitochondrial damage and retinal pigment epithelium (RPE) cell death in the pathogenesis of AMD. However, the effects of AMD mitochondria and Humanin G (HNG), a more potent variant of the mitochondrial-derived peptide (MDP) Humanin, on retinal cell survival have not been elucidated. In this study, we characterized mitochondrial and cellular damage in transmitochondrial cybrid cell lines that contain identical nuclei but possess mitochondria from either AMD or age-matched normal (Older-normal (NL)) subjects. AMD cybrids showed (1) reduced levels of cell viability, lower mtDNA copy numbers, and downregulation of mitochondrial replication/transcription genes and antioxidant enzyme genes; and (2) elevated levels of genes related to apoptosis, autophagy and ER-stress along with increased mtDNA fragmentation and higher susceptibility to amyloid-β-induced toxicity compared to NL cybrids. In AMD cybrids, HNG protected the AMD mitochondria, reduced pro-apoptosis gene and protein levels, upregulated gp130 (a component of the HN receptor complex), and increased the protection against amyloid-β-induced damage. In summary, in cybrids, damaged AMD mitochondria mediate cell death that can be reversed by HNG treatment. Our results also provide evidence of Humanin playing a pivotal role in protecting cells with AMD mitochondria. In the future, it may be possible that AMD patient's blood samples containing damaged mitochondria may be useful as biomarkers for this condition. In conclusion, HNG may be a potential therapeutic target for treatment of dry AMD, a debilitating eye disease that currently has no available treatment. Further studies are needed to establish HNG as a viable mitochondria-targeting therapy for dry AMD

    Towards a Rational Design of an Asymptomatic Clinical Herpes Vaccine: The Old, the New, and the Unknown

    Get PDF
    The best hope of controlling the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) pandemic is the development of an effective vaccine. However, in spite of several clinical trials, starting as early as 1920s, no vaccine has been proven sufficiently safe and efficient to warrant commercial development. In recent years, great strides in cellular and molecular immunology have stimulated creative efforts in controlling herpes infection and disease. However, before moving towards new vaccine strategy, it is necessary to answer two fundamental questions: (i) why past herpes vaccines have failed? (ii) Why the majority of HSV seropositive individuals (i.e., asymptomatic individuals) are naturally “protected” exhibiting few or no recurrent clinical disease, while other HSV seropositive individuals (i.e., symptomatic individuals) have frequent ocular, orofacial, and/or genital herpes clinical episodes? We recently discovered several discrete sets of HSV-1 symptomatic and asymptomatic epitopes recognized by CD4+ and CD8+ T cells from seropositive symptomatic versus asymptomatic individuals. These asymptomatic epitopes will provide a solid foundation for the development of novel herpes epitope-based vaccine strategy. Here we provide a brief overview of past clinical vaccine trials, outline current progress towards developing a new generation “asymptomatic” clinical herpes vaccines, and discuss future mucosal “asymptomatic” prime-boost vaccines that could optimize local protective immunity

    Therapeutic Periocular Vaccination with a Subunit Vaccine Induces Higher Levels of Herpes Simplex Virus-Specific Tear Secretory Immunoglobulin A Than Systemic Vaccination and Provides Protection against Recurrent Spontaneous Ocular Shedding of Virus in Latently Infected Rabbits

    Get PDF
    AbstractRabbits latently infected with herpes simplex virus type 1 (HSV-1) were vaccinated either periocularly or systemically with a subunit vaccine (gB2 + gD2) plus adjuvant or adjuvant alone. Tear films were collected daily to measure recurrent infectious HSV-1 shedding. After systemic vaccination, the latently infected rabbits were not protected against recurrent ocular viral shedding (HSV-1-positive tear film cultures/total cultures) compared with either the systemic or periocular adjuvant controls (systemic vaccination = 49 of 972, 5.0%; systemic control = 46 of 972, 4.7%; periocular control = 43 of 930, 4.6%;P> 0.8). In contrast, latently infected rabbits vaccinated periocularly with the same vaccine had significantly reduced recurrent shedding (20 of 1026, 2.0%) compared with controls (P< 0.001) or systemic vaccination (P= 0.0002). Thus, recurrent HSV-1 shedding was significantly reduced by therapeutic local periocular subunit vaccination but not by therapeutic systemic subunit vaccination. Neutralizing antibody titers in the serum of systemically and ocularly vaccinated rabbits was similar. In contrast, HSV-specific tear secretory immunoglobulin A was significantly higher in the ocularly vaccinated group (P< 0.01). These results strongly suggest that in the rabbit, and presumably in humans, the local ocular (mucosal) immune response is much more important than the systemic immune response for therapeutic protection against recurrent ocular HSV-1. Thus development of a therapeutic vaccine against recurrent ocular HSV-1 should be directed at enhancing the local ocular (mucosal) immune response

    The Gene That Encodes the Herpes Simplex Virus Type 1 Latency-Associated Transcript Influences the Accumulation of Transcripts (Bcl-x\u3csub\u3eL\u3c/sub\u3e and Bcl-x\u3csub\u3es\u3c/sub\u3e) That Encode Apoptotic Regulatory Proteins

    Get PDF
    The herpes simplex virus type 1 latency-associated transcript (LAT) inhibits apoptosis. We demonstrate here that LAT influences the accumulation of the Bcl-xL transcript versus the Bcl-xS transcript in Neuro-2A cells. Bcl-xL encodes an antiapoptotic protein, whereas Bcl-xS encodes a proapoptotic protein. Promoting the accumulation of Bcl-xL in neurons may inhibit apoptosis, thus enhancing the latency-reactivation cycle

    The Gene That Encodes the Herpes Simplex Virus Type 1 Latency-Associated Transcript Influences the Accumulation of Transcripts (Bcl-x\u3csub\u3eL\u3c/sub\u3e and Bcl-x\u3csub\u3es\u3c/sub\u3e) That Encode Apoptotic Regulatory Proteins

    Get PDF
    The herpes simplex virus type 1 latency-associated transcript (LAT) inhibits apoptosis. We demonstrate here that LAT influences the accumulation of the Bcl-xL transcript versus the Bcl-xS transcript in Neuro-2A cells. Bcl-xL encodes an antiapoptotic protein, whereas Bcl-xS encodes a proapoptotic protein. Promoting the accumulation of Bcl-xL in neurons may inhibit apoptosis, thus enhancing the latency-reactivation cycle

    Identification of Herpes Simplex Virus Type 1 Latency-Associated Transcript Sequences That both Inhibit Apoptosis and Enhance the Spontaneous Reactivation Phenotype

    Get PDF
    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) gene is essential for the high spontaneous and induced reactivation phenotype of HSV-1 in the rabbit ocular model and for the high induced reactivation phenotype in the mouse ocular model. Recently we showed that LAT has an antiapoptosis function, and we hypothesized that LAT’s ability to inhibit apoptosis played an important role in LAT’s ability to enhance the reactivation phenotype. Expression of just the first 1.5 kb of the 8.3-kb LAT gene is sufficient for both inhibition of apoptosis in an in vitro transient-transfection assay and the high spontaneous reactivation phenotype in vivo. Here we show the results of more complex mapping studies in which inhibition of apoptosis and the enhanced spontaneous reactivation phenotype also appear to be linked. The HSV-1 mutant virus dLAT371 has a high spontaneous reactivation phenotype in rabbits, suggesting that the LAT region deleted in this mutant (LAT nucleotides 76 to 447) is not required for this phenotype. The LAT3.3A viral mutant (which expresses LAT nucleotides 1 to 1499) also has a high spontaneous reactivation phenotype, suggesting that the region of LAT not expressed by this mutant (LAT nucleotide 1500 to the end of LAT) is also not required for this phenotype. Surprisingly, LAT2.9A, which is a combination of dLAT371 and LAT3.3A (i.e., it expresses LAT nucleotides 1 to 76 and 447 to 1499), has a low spontaneous reactivation phenotype indistinguishable from that of LAT null mutants. We report here that consistent with the low spontaneous reactivation phenotype of LAT2.9A, a plasmid expressing the identical LAT RNA did not inhibit caspase 9-induced apoptosis. In contrast, plasmids containing the same deletion but able to transcribe up to or past LAT nucleotide 2850 (rather than just up to LAT nucleotide 1499) inhibited caspase 9-induced apoptosis, consistent with the high spontaneous reactivation phenotype of dLAT371. Thus, LAT2.9A may have a low spontaneous reactivation phenotype because the LAT RNA that is made cannot block apoptosis, and dLAT371 apparently has a high spontaneous reactivation phenotype because the LAT RNA made has significant antiapoptosis activity. Furthermore, LAT appeared to have at least two regions capable of interfering with caspase 9-induced apoptosis. One region partially overlaps LAT nucleotides 76 to 447. The second region is partially (or completely) downstream of LAT nucleotide 1499

    Cross-protection induced by highly conserved human B, CD4+, and CD8+ T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern

    Get PDF
    BackgroundThe coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs.MethodsWe designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model.ResultsThe pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529).ConclusionA multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs

    Linear and Branched Glyco-Lipopeptide Vaccines Follow Distinct Cross-Presentation Pathways and Generate Different Magnitudes of Antitumor Immunity

    Get PDF
    Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined.We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005).These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers
    corecore