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The herpes simplex virus type 1 latency-associated transcript (LAT) inhibits apoptosis. We demonstrate here
that LAT influences the accumulation of the Bcel-x; transcript versus the Bel-xg transcript in Neuro-2A cells.
Bcel-x; encodes an antiapoptotic protein, whereas Bcl-xg encodes a proapoptotic protein. Promoting the
accumulation of Bcl-x; in neurons may inhibit apoptosis, thus enhancing the latency-reactivation cycle.

Herpes simplex virus type 1 (HSV-1) establishes latency in
trigeminal ganglia (TG) following infection of the ocular, oral,
or nasal cavity (6, 7). The latency-associated transcript (LAT)
is the only viral transcript abundantly expressed in latently
infected neurons (41). An unstable 8.3-kb LAT is spliced, yield-
ing a stable 2-kb LAT intron (12, 28). Numerous researchers
concluded that LAT promotes reactivation from latency by
increasing the pool of latently infected neurons or directly
stimulating the reactivation process (23, 46). The first 1.5 kb of
the primary LAT is sufficient for spontaneous reactivation
from latency in a rabbit ocular model of HSV-1 latency (40).

Plasmids expressing various LAT fragments enhance cell
survival following an apoptotic insult (1, 17, 19, 38). The ability
of these plasmids to promote cell survival correlates with the
ability of viruses expressing the corresponding LAT fragments
(LAT nucleotides 1 to 1499) to reactivate in the rabbit ocular
model of HSV-1 latency (40). In the same rabbit ocular model
of HSV-1 latency, a McKrae LAT null mutant (dLAT2903)
had increased levels of apoptosis in rabbit TG (38). Further-
more, another LAT ™ virus has increased neuronal apoptosis in
acutely infected mice compared to a LAT " virus (1). Although
LAT may have several functions, its antiapoptosis activity may
be important for the latency-reactivation cycle.

Mammals have two major apoptotic pathways: the death
receptor-mediated pathway (for example, Fas or tumor necro-
sis factor receptor) and the mitochondrial pathway (27, 42, 47).
The death receptor-mediated pathway activates caspase 8,
which induces a caspase cascade including caspase 3. Activa-
tion of the mitochondrial pathway results in the release of
important proapoptotic molecules, including cytochrome ¢ and
Smac/Diablo (47). Released cytochrome c¢ associates with
Apaf-1, leading to caspase 9 activation and then caspase 3 ac-
tivation. Bcl-2 family proteins regulate cytochrome ¢ (13, 24,
25, 48) and Smac/Diablo (11, 45) release. One of the Bcl-2
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family proteins, Bcl-x;, can also inhibit caspase 8-dependent
apoptosis by sequestering caspase 8 at the mitochondrial mem-
brane and inhibiting cleavage of downstream targets (43). Since
HSV-1 encodes several antiapoptotic genes (ICP27, Ug3, UgS,
gD, and LAT) (1, 4, 5, 8, 14, 19-22, 32, 33, 37, 38), regulating
apoptosis is clearly important for the viral life cycle.

One of our goals is to understand the steps in the apoptotic
pathway that LAT inhibits. Henderson et al. have previously
demonstrated that LAT inhibits caspase 8- and caspase 9-in-
duced apoptosis (17). Since LAT can inhibit apoptosis of a
proapoptotic Bel-2 family member, Bax (19), and Bcl-2 family
members regulate caspase 8- and caspase 9-induced apoptosis,
we hypothesized that LAT might alter the expression of Bcl-2
family members. To test this hypothesis, we examined RNA
expression of Bcl-2 family members in productively infected
cells and transiently transfected Neuro-2A cells. Neuro-2A
cells were chosen for these studies because they are mouse
neuroblastoma cells derived from the peripheral nervous sys-
tem, and LAT inhibits apoptosis in these cells (17, 19, 38).
Similar end point titers of infectious virus were present in
Neuro-2A cells that were infected with strain dLLAT2903, the
wild-type (wt) McKrae strain, or the rescued dLAT2903 strain,
which is consistent with previous studies using other cell lines
(39). However, we have observed more apoptosis at 24 h after
infection when Neuro-2A cells were infected with strain
dLAT2903 versus the wt McKrae strain (data not shown).

The mRNA that encodes the Bcl-x; protein can be alterna-
tively spliced within exon 2, yielding a proapoptotic protein
(Bcl-xg) (31). The Bcl-x primers used here amplified a 250-bp
product from Bcl-x; ¢cDNA and a 64-bp product from the
cDNA of the alternatively spliced Bcl-xg product (Table 1), as
previously reported (31). Reverse transcriptase PCR (RT-
PCR) of total RNA prepared from Neuro-2A cells produc-
tively infected with LAT™ strain dLAT2903 for 24 h after
infection produced a prominent 64-bp band corresponding to
the Bcl-xg RNA (Fig. 1A, lane dLAT). In Neuro-2A cells
infected with the wt McKrae strain (Fig. 1A, lane WT) or strain
dLAT2903-rescued virus (data not shown), the 64-bp RT-PCR
product was not readily detected. In some cultures of mock-
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TABLE 1. Primers used to amplify cDNA®

Gene Primer (type)” PCR product(s) (bp) Melting temp No. of cycles GeneBank accession no.

Bcl-2 GTCGCTACCGTCGTGACTT (F) 267 60 35 NM 009741
CAGCCTCCGTTATCCTGGA (R)

Bel-x CCAGCTTCACATAACCCAG (F) 250, 64¢ 60 30-35 L35049
ATCCACAAAAGTGTCCCAGC (R)

Casp 9 AAGACCATGGCTTTGAGGTG (F) 333 60 35 AB01960
AACAGCCAGGAATCTGCTTG (R)

B-actin GTGGGGCGCCCCAGGCACCA (F) 400 53 20
C TCCTTAATGTCACGCACGATTTC (R)

VHS TGCTACATTCCCACGATCAA (F) 346 60 30 AF007815
AGGTCCTCGTCGTCTTCGTA (R)

gC AGGTCCTGACGAACATCACC (F) 208 60 30 JO2216
TAATACATTCCCTGGGTCGC (R)

Bak TTGCCCAGGACACAGAGGAGGT (F) 527 60 40 AF402617

GAATTGGCCCAACAGAACCACACC (R)

“ The melting temperatures of the respective primers and the numbers of cycles used for PCR are given for each primer pair.
> Forward (F) and reverse (R) primers were designed on the basis of the sequences of the respective genes. All primers are listed in a 5’ to 3’ direction.
¢ The Bel-x primers can amplify a 250-bp ¢cDNA product (Bcl-x; ) and a 64-bp ¢cDNA product (Bcl-xg).

infected cells, low levels of the Bcl-xg splice product were
detected, which is consistent with these cells undergoing apo-
ptosis after growth in subcultures. When 30 to 35 cycles of
amplification were performed, the Bcl-xg-amplified product
was consistently detected when Neuro-2A cells were infected
with strain dLAT2903. However, the Bcl-xg-amplified product
was not readily detected when fewer than 25 cycles were used
for amplification. The sequence of the 64-bp RT-PCR product
amplified in Neuro-2A cells infected with strain dLAT2903 was
identical to that of the Bcl-xg spliced product.

Additional studies were performed to determine when the
Bcl-xg-amplified cDNA product was detectable in Neuro-2A
cells that were infected with strain dLAT2903. In general,
when Neuro-2A cultures were infected with dLAT2903, the
Bcl-xg spliced product was detectable between 6 and 8 h after
infection (Fig. 1B). Cultures infected with the wt McKrae
strain typically contained little or none of the Bcl-xg-amplified
product. In several experiments, Neuro-2A cultures infected
with dLAT2903 contained reduced levels of the Bcl-x; -ampli-
fied product (in conjunction with the increased levels of the
Bcl-xg-amplified product). This was particularly evident when
reduced numbers of cycles were used for amplification of the
cDNA (35 cycles [Fig. 1A] versus 31 cycles [Fig. 1B]). In cul-
tures infected with dLAT2903, since Neuro-2A cells must be
split every 2 to 3 days or they begin to detach from the dish and
undergo an apoptotic death, the condition of the cell cultures
can influence Bcl-x; levels and the appearance of the Bcl-xg
product. In summary, the results of these studies suggested
that LAT either inhibited splicing of the primary Bcl-x tran-
script into Bcel-xg or increased the ratio of Bel-x; to Bcl-xg by
stabilizing Bcl-x; RNA levels and/or destabilizing Bcl-xg RNA
levels.

In contrast to the results obtained with Bcl-x, the levels of
rRNA, Bcl-2, caspase 9, and B-actin did not change dramati-
cally after infection (Fig. 2). In general, these results suggested
that when Neuro-2A cells were infected with the wt McKrae
strain of HSV-1 or the strain McKrae-based LAT™ mutant
dLAT2903, the virus host shutoff (VHS) function was negligi-

A.

dLAT WT

Mock M

FIG. 1. Analysis of Bcl-x RNA expression in infected Neuro-2A
cells. Using a multiplicity of infection of 4, Neuro-2A cells were infect-
ed with strain dLAT2903 (dLAT) or wt HSV-1 (McKrae strain) (WT).
As controls, cultures were mock infected (Mock). At 24 h after infec-
tion (A) or at 8 and 24 h after infection (B), RNA was prepared using
Trizol reagent and the RNA was subsequently treated with RNase-free
DNase I for 30 min at room temperature. First-strand cDNA was syn-
thesized using 2 pg of total RNA as the template, 0.5 pg of oligo(dT)
12-18 as a primer, and a SuperScript preamplification kit (Stratagene,
La Jolla, Calif.). For each sample, 1/10 of the cDNA reaction mixture
was used with the indicated primers (Table 1). Using 35 (A) or 31 (B)
cycles, amplification was conducted as described in Table 1. The po-
sitions of the Bel-x; (x;) and Bcl-xg (xg) bands are indicated. Omitting
reverse transcriptase from the reaction eliminated amplification of the
specific bands (data not shown). A 100-bp ladder was used as a marker
(M) to estimate the size of the amplified cDNA products. These results
are representative of at least five independent experiments.
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FIG. 2. Analysis of apoptosis regulatory genes in infected Neuro-2A cells. Using a multiplicity of infection of 4, Neuro-2A cells were infected
with strain dLAT2903 (dLAT) or wt HSV-1 (McKrae strain) (WT). As controls, cultures were mock infected (Mock). At 6, 16, or 24 h after
infection, RNA was prepared using Trizol reagent and the RNA was subsequently treated with RNase-free DNase I for 30 min at room
temperature. Samples containing total RNA (1 pg) were electrophoresed on a 1.2% formaldehyde agarose gel, and the position of the rRNA was
determined. First-strand cDNA was synthesized using 2 pg of total RNA as the template, 0.5 pg of oligo(dT)12-18 as a primer, and a SuperScript
preamplification kit (Stratagene). For each sample, 1/10 of the cDNA reaction mixture was used with the indicated primers (Table 1). Amplifi-
cation was conducted as described in Table 1. The closed circles denote the positions of amplified products. Omitting reverse transcriptase from
the reaction eliminated amplification of the specific bands (data not shown). A 100-bp ladder was used as a marker (M) to estimate the size of
the amplified cDNA products. These results are representative of at least four independent experiments.

ble. Since infection of sympathetic and sensory neurons with
HSV has been reported to not elicit a potent VHS activity (34),
this provided additional evidence that Neuro-2A cells have
neuron-like properties. As expected, infection of nonneuronal
cell types with the McKrae strain leads to reduction of the
steady-state levels of B-actin RNA, indicating that the McKrae
strain has a functional VHS activity (data not shown). Consis-
tent with the finding that Neuro-2A cells infected with wt strain
McKrae or strain dLAT2903 yield similar amounts of virus,
expression of VHS RNA or glycoprotein C (gC) RNA was the
same when Neuro-2A cells were infected.

Since HSV-1 encodes several antiapoptotic genes that are
expressed during productive infection (1, 4, 5, 8, 14, 19-22, 32,
33, 37, 38), we tested whether, in the absence of other viral

genes, LAT could inhibit accumulation of Bcl-xg. Neuro-2A
cells transfected with Bax (Fig. 3A, lane 3) and mock-trans-
fected Neuro-2A cells (Fig. 3A, lane 4) both contained the
64-bp Bcl-xg-amplified band. This was as expected, because
Neuro-2A cells undergo apoptosis as a result of Bax expression
(19) or when growth factors are depleted (17). In contrast,
Neuro-2A cells transfected with LAT (Fig. 3A, lane 1) or the
LAT plus Bax (lane 2) did not contain a prominent Bcl-xg-
amplified band, suggesting that in the absence of other viral
genes, LAT inhibited accumulation of Bcl-xg. Inclusion of re-
verse transcriptase in the cDNA reaction was required for
detection of the 250-bp Bcl-x; -amplified products and 64-bp
Bcl-xg-amplified products, confirming that cDNA, not contam-
inating DNA, was amplified (Fig. 3B). No dramatic changes
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A. Bel-x B.

M 1 2 3 4

No RT

FIG. 3. LAT inhibits splicing of Bcl-xg in transfected Neuro-2A
cells. Neuro-2A cells were transfected with the plasmids described
below. Lane 1, 4 pg of LAT3.3-1 pg of pcDNA3.1; lane 2, 4 pg of
LAT3.3-1 pg of pCMVBax; lane 3, 4 ug of pcDNA3.1-1 pg of pCM-
VBax; lane 4, 5 ug of pcDNA3.1. LAT3.3 contains the LAT promoter
plus the first 1.5 kb of LAT coding sequences (19). pCMVBax contains
the full-length Bax cDNA downstream of the human cytomegalovirus
promoter; the plasmid was obtained from Upstate Biotechnology
(Lake Placid, N.Y.). At 48 h after transfection, using primers that
amplify Bcl-x (A), Bel-2 (C), or Bak (D), RNA was prepared and
RT-PCR was performed as described for Fig. 1. (B) cDNA reactions
that did not contain reverse transcriptase (No RT) were amplified
using the Bcl-X primers. In the No RT reactions, the Bel-x primers did
amplify the expected products. The No RT reaction also yielded no
bands when the Bcl-2 or Bak primers were used (data not shown).

were detected in the levels or mobility of the Bcl-2-amplified
product regardless of the treatment (Fig. 3C). Studies were
also performed to test whether LAT altered splicing of Bak,
because Bak is a proapoptotic gene that belongs to the Bcl-2
family. Interestingly, Bak can be alternatively spliced in neu-
rons to yield an antiapoptotic protein rather than the proapo-
ptotic protein seen in nonneuronal cells (44). In contrast to
Bcel-x, LAT did not have a dramatic effect on Bak splicing
patterns in transiently transfected Neuro-2A cells (Fig. 3D) or
in productively infected Neuro-2A cells (data not shown).
This study demonstrated that LAT inhibited accumulation
of Bel-xg This suggests that LAT promoted splicing of Bcl-x to
Bcel-x; rather than to Bcl-xg or that LAT stabilized Bel-x;
steady-state RNA levels while at the same time destabilizing
Bcl-xg RNA levels. Since the levels of Bcl-2, caspase 9, and
B-actin mRNA were not reduced dramatically in infected
Neuro-2A cells (Fig. 2), the reduction of Bcl-x; levels in cells
infected with strain dLAT2903 was not merely the result of
viral host shutoff activity. These results are important, because
the Bcl-x; protein has antiapoptotic activity whereas the Bel-xg
protein is proapoptotic. Thus, increasing the ratio of Bcl-x; to
Bcl-xg transcripts, as LAT appeared to do in these studies,
should enhance cell survival (9). The ability of the LAT to
interfere with caspase 8- and caspase 9-induced apoptosis (17)
may be linked to influencing splicing of Bcl-x to Bel-x; rather
than Bcl-xg, since Bcl-x; inhibits both caspase 8 (43)- and
caspase 9-induced apoptosis (18, 35). Bel-x;, but not Bcl-2, is
highly expressed in the central and peripheral nervous systems
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of developing (26) and adult mice (15, 16, 30, 36), suggesting
that Bcl-x; is the most important Bcl-2 family protein ex-
pressed in TG.

Although LAT contains small open reading frames, a recent
study concluded that LAT protein expression is not detected in
infected cells or infected mice (29). The small open reading
frames within the first 1.5 kb of LAT, a region of the LAT that
promotes spontaneous reactivation, do not show a high degree
of amino acid similarity between HSV-1 strains (10), suggest-
ing that LAT RNA sequences, rather than a LAT protein,
influences Bcl-xg accumulation. The ability of LAT to interact
with splicing factors (2) may influence splicing of certain cel-
lular transcripts, including Bcl-x; . Although caspase 9 (3) and
Bak (44) are alternatively spliced, LAT expression did not
dramatically alter the levels of these spliced products. Conse-
quently, we conclude that LAT has the potential to influence
expression of certain spliced cellular transcripts.

This study was supported by the Discovery Fund for Eye Research,
the Skirball Program in Molecular Ophthalmology, and Public
Health Service grants to S.L.W. (EY13191 and EY12823) and C.J.
(1P20RR15635).
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