336 research outputs found

    Active Flow Control by Using Plasma Actuators

    Get PDF
    Active flow control has recently received an increasing attention since it allows to directly manipulate the flow-field around a surface only when it is effectively requested. Aerodynamic plasma actuators supplied by a dielectric barrier discharge (DBD) can be used for this purpose. Usually, sinusoidal voltages in the range 5–50 kV peak and frequencies between 1 and 100 kHz are utilized to ignite this plasma typology. The surface discharge produced by these devices is able to tangentially accelerate the flow field by means of the electrohydrodynamic (EHD) interaction. DBDs generate non-thermal plasmas characterized by low input energies and limited temperature increments. Plasma actuators can be easily designed by following the shape of the aerodynamic body and can be used over heat-sensitive surfaces. These aerodynamic devices have demonstrated to produce boundary layer modifications with induced speeds up to 10 m/s. Their use over airfoils, flaps, and blades have shown the possibility to delay the transition between laminar to turbulent regime, to prevent flow separation enhancing lift and reducing drag. Moreover, the adoption of these actuators over landing gears and trailing edges may induce a noise reduction effect. Dielectric materials, electrodes configuration, and supplying waveforms are most relevant parameters to be considered to enhance actuator performance. On a parallel plane, on/off actuation strategy is a key point in the use of these devices when utilized over aerodynamic surfaces impinged within an external flow

    Self-tuning high-voltage and high-frequency sinusoidal power supply for dielectric barrier discharge plasma generation

    Get PDF
    In this paper a high-voltage sinusoidal power supply controlled by Arduino DUE micro-controller is described. This generator can feed a dielectric barrier discharge (DBD) load with sinusoidal voltages up to 20 kV peak and frequencies in the range 10\u201360 kHz, with a maximum output power of 200 W. Output voltage can be produced either in a continuous mode, or with on/off modulation cycles, according to treatment/application requirements. This power source is equipped with on-board diagnostics used to measure the output voltage and the charge delivered to the load. With a sample frequency of 500 kHz, Arduino DUE allows to evaluate both the high voltage and the average power feeding the discharge without the use of an expensive external measurement setup. Lissajous techniques are utilized to calculate discharge average power in a quasi-real-time manner. When a load is connected to high-voltage terminals, a self-tuning procedure is carried out to obtain the best working frequency. This parameter allows to minimize power-electronic component stress and to maximize generator efficiency

    A multi-stage model for dielectric barrier discharge in atmospheric pressure air

    Get PDF
    In this paper, a multi-stage numerical methodology for the description of the Dielectric Barrier Discharge physics in air is discussed. The behavior of the heavy species is computed using drift-diffusion equations. Electrons are taken into account by solving a non-linear formulation of electrostatics. The physical effects of the steamer discharges are modelled by means of a simplified 0D approach. The model also includes a semi-implicit 0D model for the assessment of the elementary chemical processes occurring in air. The developed methodology is employed for the simulation of a volumetric Dielectric Barrier Discharge reactor. The obtained species number density and surface charge deposition rates and are shown and discussed

    Circuiti magnetici

    Get PDF

    Networks from gene expression time series: characterization of correlation patterns

    Full text link
    This paper describes characteristic features of networks reconstructed from gene expression time series data. Several null models are considered in order to discriminate between informations embedded in the network that are related to real data, and features that are due to the method used for network reconstruction (time correlation).Comment: 10 pages, 3 BMP figures, 1 Table. To appear in Int. J. Bif. Chaos, July 2007, Volume 17, Issue

    Real Time Power Control in a High Voltage Power Supply for Dielectric Barrier Discharge Reactors: Implementation Strategy and Load Thermal Analysis

    Get PDF
    Atmospheric-pressure plasma treatments for industrial and biomedical applications are often performed using Dielectric Barrier Discharge reactors. Dedicated power supplies are needed to provide the high voltage frequency waveforms to operate these nonlinear and time-dependent loads. Moreover, there is a growing technical need for reliable and reproducible treatments, which require the discharge parameters to be actively controlled. In this work, we illustrate a low-cost power supply topology based on a push-pull converter. We perform experimental measurements on two different reactor topologies (surface and volumetric), showing that open loop operation of the power supply leads to a temperature and average power increase over time. The temperature increases by Delta T-vol similar to 120 degrees C and Delta T-sup similar to 70 degrees C, while the power increases by Delta P-vol similar to 78% and Delta P-sup similar to 60% for the volumetric (40 s) and superficial reactors (120 s), respectively. We discuss how these changes are often unwanted in practical applications. A simplified circuital model of the power supply-reactor system is used to infer the physical relation between the observed reactor thermal behavior and its electrical characteristics. We then show a control strategy for the power supply voltage to ensure constant average power operation of the device based on real-time power measurements on the high voltage side of the power supply and an empirical expression relating the delivered power to the power supply output voltage. These are performed with an Arduino Due microcontroller unit, also used to control the power supply. In a controlled operation the measured power stays within 5% of the reference value for both configurations, reducing the temperature increments to Delta T-vol similar to 80 degrees C and Delta T-sup similar to 44 degrees C, respectively. The obtained results show that the proposed novel control strategy is capable of following the transient temperature behavior, achieving a constant average power operation and subsequently limiting the reactor thermal stress

    Transcriptional landscape of repetitive elements in normal and cancer human cells

    Get PDF
    BACKGROUND: Repetitive elements comprise at least 55% of the human genome with more recent estimates as high as two-thirds. Most of these elements are retrotransposons, DNA sequences that can insert copies of themselves into new genomic locations by a “copy and paste” mechanism. These mobile genetic elements play important roles in shaping genomes during evolution, and have been implicated in the etiology of many human diseases. Despite their abundance and diversity, few studies investigated the regulation of endogenous retrotransposons at the genome-wide scale, primarily because of the technical difficulties of uniquely mapping high-throughput sequencing reads to repetitive DNA. RESULTS: Here we develop a new computational method called RepEnrich to study genome-wide transcriptional regulation of repetitive elements. We show that many of the Long Terminal Repeat retrotransposons in humans are transcriptionally active in a cell line-specific manner. Cancer cell lines display increased RNA Polymerase II binding to retrotransposons than cell lines derived from normal tissue. Consistent with increased transcriptional activity of retrotransposons in cancer cells we found significantly higher levels of L1 retrotransposon RNA expression in prostate tumors compared to normal-matched controls. CONCLUSIONS: Our results support increased transcription of retrotransposons in transformed cells, which may explain the somatic retrotransposition events recently reported in several types of cancers. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1186/1471-2164-15-583 and is accessible for authorized users

    Inactivation of eimeria Oocysts in aqueous solution by a dielectric barrier discharge plasma in contact with liquid

    Get PDF
    This study presents a novel technique to inactivate coccidian oocysts in an aqueous solution. The technique consists of treating the contaminated liquid by using an atmospher- ic-pressure air dielectric barrier discharge (DBD) plasma in contact with it. Many experiments in several operating conditions were performed. The discharge was supplied by sinusoidal and nanosecond-pulsed voltages with a constant average power of ~7 W in both cases. Biological effects due to the plasma were investigated by performing tests with increasing treatment time. A sudden ~40% drop in the number of survived oocysts was reached in 4 min and a two-fold reduction was detected after 12 min of exposure. No significant differences in the biocidal efficacy were detected between the AC-driven and the nanosecond-pulsed discharge. Chi-squared statistical analysis on the treated samples showed significant statistical difference (with a statistical significance P value parameter less than 0.01) and nonrandomness warranty of the results, opening interesting scenarios for fimire developments
    • …
    corecore