The figure shows a magnetic circuit. Find the self and mutual inductances of the two windings and the magnetic flux Φ. Consider a thickness $\boldsymbol{\delta}$ for the air gaps, a length L for the columns and a constant iron normal section S. $\mathbf{N}_{1}=100 ; \mathbf{N}_{2}=200$; $\delta=1 \mathrm{~mm} ; L=100 \mathrm{~mm} ; ~ S=100 \mathrm{~cm}^{2} ; \mu_{0}=1.257$ $10^{-6} \mathrm{H} / \mathrm{m}, \mu_{\mathrm{Fe}}=2000, i_{1}=2 \mathrm{~A}, i_{2}=3 \mathrm{~A}$

R: $\mathrm{L}_{1}=57 \mathrm{mH} ; \mathrm{L}_{2}=228 \mathrm{mH} ; \mathrm{M}_{12}=\mathrm{M}_{21}=114$ $\mathrm{mH}, \Phi=4.57 \mathrm{mWb}$.

The figure shows a magnetic circuit. Find the self and mutual inductances of the two windings considering infinitive the relative permeability of the ferromagnetic material. Consider a thickness δ for the air gaps and a constant normal section S for the branches of the magnetic circuit. $\mathrm{N}_{1}=150 ; \quad \mathrm{N}_{2}=210 ; \quad \delta=6 \mathrm{~mm} ; \quad \mathrm{S}=20 \mathrm{~cm}^{2}$; $\mu_{0}=1.25710^{-6} \mathrm{H} / \mathrm{m}$.

R: $\quad L_{1}=6.284 \mathrm{mH} ; \quad L_{2}=12.32 \quad \mathrm{mH} ;$ $M_{12}=M_{21}=-4.4 \mathrm{mH}$.

The figure shows a magnetic circuit. Find the self and mutual inductances of the two windings considering infinitive the relative permeability of the ferromagnetic material and the magnetic flux Φ. Consider a thickness δ and 3δ for the air gaps and a constant normal section S for the branches of the magnetic circuit.
$\mathrm{N}_{1}=120 ; \quad \mathrm{N}_{2}=200 ; \delta=0.8 \mathrm{~mm} ; \quad \mathrm{S}=160 \mathrm{~cm}^{2}$; $\mu_{0}=1.25710^{-6} \mathrm{H} / \mathrm{m} ; i_{1}=1.2 \mathrm{~A}, i_{2}=4 \mathrm{~A}$.
R:
$\mathrm{L}_{1}=0.36 \mathrm{mH}$;
$\mathrm{L}_{2}=\mathbf{0 . 4 m H}$;
$M_{12}=M_{21}=0 \mathrm{mH} ; \Phi=-\mathbf{7 . 6 m W b}$.

The figure shows a magnetic circuit. Find the three magnetic fluxes Φ_{1}, Φ_{2} and Φ_{3}, which flow through the three vertical columns considering infinitive the relative permeability of the ferromagnetic material. Find the self and mutual inductances of the three windings. Consider a thickness $\boldsymbol{\delta}$ for the air gaps and a constant normal section S for the branches of the magnetic circuit.
$\mathrm{N}_{1}=150 ; \quad \mathrm{N}_{2}=100 ; \quad \mathrm{N} 3=200 ; \quad \delta=2 \mathrm{~mm}$; $S=4 \mathrm{~cm}^{2} ; \mu_{0}=1.25710^{-6} \mathrm{H} / \mathrm{m} ; i_{1}=1 \mathrm{~A}, i_{2}=3 \mathrm{~A}$, $i_{3}=4 \mathrm{~A}$.

R: $\quad \Phi_{1}=-10 \mu \mathrm{~Wb} ; \quad \Phi_{2}=133 \mu \mathrm{~Wb}$; $\Phi_{3}=143 \mu \mathrm{~Wb} ; \quad \mathrm{L}_{1}=2.26 \mathrm{mH} ; \quad \mathrm{L}_{2}=1.5 \mathrm{mH}$;

$\mathrm{L}_{3}=6 \mathrm{mH} ; \mathrm{M}_{12}=\mathrm{M}_{21}=\mathbf{0 . 7 5 4 m H} ; \mathrm{M}_{13}=\mathrm{M}_{31}=-$ $1.51 \mathrm{mH} ; \mathrm{M}_{23}=\mathrm{M}_{32}=2 \mathrm{mH}$;.

