14 research outputs found

    Lobster Eye X-ray optics for astrophysics: Recent status

    Get PDF
    X-ray optics in Lobster Eye arrangement represent promising complementary device to narrow field X-ray optics in common use. We present briefly recent status of design, developments, and tests of X-ray optics including Lobster Eye modules developed and tested within recent space project

    Timepix: Influence of temperature and vacuum on equalisation of x-ray detector and its verification

    No full text
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. The thermal dependence of the semiconductor detector is one of the critical properties. This manuscript describes changes in the threshold scans, equalization and its verification for the particle counting pixel detector Timepix. The Timepix detector family has great potential for use not only in space, i.e. for small satellite (CubeSat) missions, but also in many other areas like medicine, material testing or particle colliders (i.e. Large Hadron Collider). In this case, several experiments were performed with the Timepix detector under the vacuum conditions as well as ambient conditions with the thermal stabilization at several temperatures in a range from-15oC to +80oC. This paper describes the early experimental results of the chip temperature dependence. The detector equalization and validity of the original equalization dependently on different temperatures is examined. The changes in the detector could cause the errors and shifts of the detection limit for low-energies

    Timepix: Influence of temperature and vacuum on equalisation of x-ray detector and its verification

    No full text
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. The thermal dependence of the semiconductor detector is one of the critical properties. This manuscript describes changes in the threshold scans, equalization and its verification for the particle counting pixel detector Timepix. The Timepix detector family has great potential for use not only in space, i.e. for small satellite (CubeSat) missions, but also in many other areas like medicine, material testing or particle colliders (i.e. Large Hadron Collider). In this case, several experiments were performed with the Timepix detector under the vacuum conditions as well as ambient conditions with the thermal stabilization at several temperatures in a range from-15oC to +80oC. This paper describes the early experimental results of the chip temperature dependence. The detector equalization and validity of the original equalization dependently on different temperatures is examined. The changes in the detector could cause the errors and shifts of the detection limit for low-energies

    Lobster eye optics: Position determination based on 1D optics with simple code mask

    No full text
    Lobster eye X-ray optics in the one dimensional (1D) arrangement has advantages in higher reflectivity, especially for higher energies, compared to classical two dimensional (2D) Schmidt's arrangement. One dimensional optics can determine only one direction of the incoming beam. There is placed a strip in front of the optics for determining of the second direction. This strip is made of X-ray proof material which blocks the incoming beam and thus causes a gap in the line. Based on these facts, it is possible to determine the position of each point source which has enough signal to gap ratio. Unfortunately, the intensity of sources is not possible to assess by this method. Copyright © 2018 SPIE.I would like to thank all the co-authors for their help in the research. Their involvement was priceless. The work was supported by the Grant Agency of the Czech Republic under grant no. 18-10088Y, by the Grant Agency of the Czech Technical University in Prague grant No. SGS18/186/OHK3/3T/13 and by the fellowship as ’Personal Tecnico de Apoyo’ number PTA2016-13192-I

    Lobster eye optics: Position determination based on 1D optics with simple code mask

    No full text
    Copyright © 2018 SPIE. Lobster eye X-ray optics in the one dimensional (1D) arrangement has advantages in higher reflectivity, especially for higher energies, compared to classical two dimensional (2D) Schmidt's arrangement. One dimensional optics can determine only one direction of the incoming beam. There is placed a strip in front of the optics for determining of the second direction. This strip is made of X-ray proof material which blocks the incoming beam and thus causes a gap in the line. Based on these facts, it is possible to determine the position of each point source which has enough signal to gap ratio. Unfortunately, the intensity of sources is not possible to assess by this method

    Lobster eye optics: Position determination based on 1D optics with simple code mask

    No full text
    Copyright © 2018 SPIE. Lobster eye X-ray optics in the one dimensional (1D) arrangement has advantages in higher reflectivity, especially for higher energies, compared to classical two dimensional (2D) Schmidt's arrangement. One dimensional optics can determine only one direction of the incoming beam. There is placed a strip in front of the optics for determining of the second direction. This strip is made of X-ray proof material which blocks the incoming beam and thus causes a gap in the line. Based on these facts, it is possible to determine the position of each point source which has enough signal to gap ratio. Unfortunately, the intensity of sources is not possible to assess by this method
    corecore