59 research outputs found

    Environment-Driven Coherent Population Transfer Governs the Ultrafast Photophysics of Tryptophan

    Get PDF
    By combining UV transient absorption spectroscopy with sub-30-fs temporal resolution and CASPT2/MM calculations, we present a complete description of the primary photo-induced processes in solvated tryptophan. Our results shed new light on the role of the solvent in the relaxation dynamics of tryptophan. We unveil two consecutive coherent population transfer events involving the lowest two singlet excited states: a sub-50-fs non-adiabatic La-->Lb transfer through a conical intersection and a subsequent 220 fs reverse Lb-->La transfer due to solvent assisted adiabatic stabilization of the La state. Vibrational fingerprints in the transient absorption spectra provide compelling evidence of a vibronic coherence established between the two excited states from the earliest times after photoexcitation and lasting until the back-transfer to La is complete. The demonstration of response to the environment as a driver of coherent population dynamics among the excited states of tryptophan closes the long debate on its solvent-assisted relaxation mechanisms and extends its application as a local probe of protein dynamics to the ultrafast timescales

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    Get PDF
    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort

    COBRAMM 2.0 A software interface for tailoring molecular electronic structure calculations and running nanoscale (QM/MM) simulations

    Get PDF
    We present a new version of the simulation software COBRAMM, a program package interfacing widely known commercial and academic software for molecular modeling. It allows a problem-driven tailoring of computational chemistry simulations with effortless ground and excited-state electronic structure computations. Calculations can be executed within a pure QM or combined quantum mechanical/molecular mechanical (QM/MM) framework, bridging from the atomistic to the nanoscale. The user can perform all necessary steps to simulate ground state and photoreactions in vacuum, complex biopolymer, or solvent environments. Starting from ground-state optimization, reaction path computations, initial conditions sampling, spectroscopy simulation, and photodynamics with deactivation events, COBRAMM is designed to assist in characterization and analysis of complex molecular materials and their properties. Interpretation of recorded spectra range from steady-state to time-resolved measurements. Various tools help the user to set up the system of interest and analyze the results

    Feeding site usage by griffon vultures (Gyps fulvus) in Bulgaria revealed by camera traps

    No full text
    A group of griffon vultures in Kresna Gorge was studied for its visit on the feeding station next to Rakitna Village after being reintroduced in the area. A camera trap method was used for a better understanding of the breeding behaviour of the griffon vulture, including the intra- and inter-species relations. A statistically significant difference was found between the independent feeding events during the pre-incubation and incubation periods of vultures. The duration of those events also differs, the ones in the second period being longer. Furthermore, a statistically significant difference was observed between the number of vultures per photo for the two sample periods, as a result of a different number of unmarked wild birds and different activity patterns of the nesting pairs. In spite of the fact that the terrestrial predators are also active during the night, their daytime presence leads to a high enough overlap between the two ecological groups, showing that the carnivores are a disturbance factor for the scavengers. The raven is the most abundant species at the feeding site and thus is a food competitor to the griffon vulture. The two species have adapted their behaviour to use the feeding station more successfully during the different biological periods. A significant decrease in the activity overlap between the individuals of the successfully nesting pairs was observed on the feeding station after the beginning of the incubation period. On the other hand, the activity overlap of the unsuccessfully nesting pairs increased in the second sample period. Camera traps can be used in further studies of the mating ecology for individual breeding pairs, when a direct observation on the nest is hard or impossible. This can be a cheap alternative of the time-consuming field observations

    Semantic technologies for data analysis in health care

    No full text
    A fruitful application of Semantic Technologies in the field of healthcare data analysis has emerged from the collaboration between Oxford and Kaiser Permanente a US healthcare provider (HMO). US HMOs have to annually deliver measurement results on their quality of care to US authorities. One of these sets of measurements is defined in a specification called HEDIS which is infamous amongst data analysts for its complexity. Traditional solutions with either SAS-programs or SQL-queries lead to involved solutions whose maintenance and validation is difficult and binds considerable amount of resources. In this paper we present the project in which we have applied Semantic Technologies to compute the most difficult part of the HEDIS measures. We show that we arrive at a clean, structured and legible encoding of HEDIS in the rule language of the RDF-triple store RDFox. We use RDFox’s reasoning capabilities and SPARQL queries to compute and extract the results. The results of a whole Kaiser Permanente regional branch could be computed in competitive time by RDFox on readily available commodity hardware. Further development and deployment of the project results are envisaged in Kaiser Permanente

    Semantic technologies for data analysis in health care

    No full text
    A fruitful application of Semantic Technologies in the field of healthcare data analysis has emerged from the collaboration between Oxford and Kaiser Permanente a US healthcare provider (HMO). US HMOs have to annually deliver measurement results on their quality of care to US authorities. One of these sets of measurements is defined in a specification called HEDIS which is infamous amongst data analysts for its complexity. Traditional solutions with either SAS-programs or SQL-queries lead to involved solutions whose maintenance and validation is difficult and binds considerable amount of resources. In this paper we present the project in which we have applied Semantic Technologies to compute the most difficult part of the HEDIS measures. We show that we arrive at a clean, structured and legible encoding of HEDIS in the rule language of the RDF-triple store RDFox. We use RDFox’s reasoning capabilities and SPARQL queries to compute and extract the results. The results of a whole Kaiser Permanente regional branch could be computed in competitive time by RDFox on readily available commodity hardware. Further development and deployment of the project results are envisaged in Kaiser Permanente
    • …
    corecore