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Ab initio calculation of molecular diffraction
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Abstract
We discuss the application of ab initio x-ray
diffraction (AIXRD) to the interpretation of time-
resolved and static x-ray diffraction. In our ap-
proach, elastic x-ray scattering is calculated di-
rectly from the ab initio multiconfigurational wave
function via a Fourier transform of the elec-
tron density, using the first Born approximation
for elastic scattering. Significant gains in effi-
ciency can be obtained by performing the required
Fourier transforms analytically, making it possi-
ble to combine the calculation of ab initio x-
ray diffraction with expensive quantum dynamics
simulations. We show that time-resolved x-ray
diffraction can detect not only changes in molec-
ular geometry, but also changes in the electronic
state of a molecule. Calculations for cis-, trans-,
and cyclo-butadiene, as well as benzene and 1,3-
cyclohexadiene are included.

1 Introduction
Photochemical reactions have tremendous impor-
tance, ranging from photosynthesis to atmospheric
chemistry, and technologies such as sensors and
displays. They are intrinsically complex, with
nonadiabatic dynamics1 and conical intersections2

known to play an important role, and they oc-
cur predominantly on the ultrashort time-scale.3

For these and other reasons, a detailed understand-
ing remains elusive.4 However, new experimental
techniques capable of monitoring photochemical

∗To whom correspondence should be addressed

processes in unprecedented detail are appearing.
Time-resolved x-ray diffraction imaging of

atomic motion has already been demonstrated at
third generation synchrotrons for comparatively
slow molecular processes in condensed phases,
such as photolysis5,6 and vibrational relaxation7

in solvents. Compared to time-resolved molecular
spectroscopy, which ultimately measures energy
levels and their populations, one major advantage
of time-resolved structural dynamics is that it pro-
vides an immediate link to mechanistic chemistry.
In principle structural dynamics, colloquially re-
ferred to as ‘molecular movies’, can give direct ac-
cess to molecular geometry as a function of time,
including the spatial distributions of functional
groups, steric hindrances, or spatial electrostatic
charge distributions.

A new generation of x-ray sources known as x-
ray free-electron lasers (XFELs)8–12 have drasti-
cally advanced over the last 5 years. In 2009, the
LCLS at Stanford became the first to successfully
demonstrate free-electron lasing,13 similarly fol-
lowed in 2011 by SACLA in Japan.14 New XFELs
are under construction in Hamburg, Japan, Ko-
rea and Switzerland.9,10,15,16 Their unprecedented
pulse intensity allows for crystal-free diffraction
imaging of biomolecules,17–19 and the short dura-
tion and high intensity of the XFEL pulses means
that ultrafast x-ray diffraction with spatial and tem-
poral resolution is feasible.20,21 Recently, diffrac-
tion from aligned22,23 and unaligned24 gas-phase
molecules was demonstrated at the LCLS.

Since time-resolved x-ray diffraction is set to
emerge as a powerful tool for structural dynam-
ics and photochemistry, it is important to con-
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nect the experiments with modern computational
methods used for the analysis and interpretation
of experiments.25–27 We outline in this paper how
the diffraction pattern of molecules can be calcu-
lated efficiently from multiconfigurational ab ini-
tio wave functions, connecting elastic x-ray scat-
tering calculations with modern electronic struc-
ture methods. We examine the importance of the
level of ab initio theory and the size of the ba-
sis set, and compare the ab initio x-ray diffraction
patterns with those calculated by the independent
atom model. We restrict ourselves to elastic x-ray
scattering, and discussion of inelastic effects28 is
left for future publications.

An interesting question in the context of struc-
tural dynamics is if x-ray scattering can be used to
identify the electronic state of a molecule.29,30 Un-
der specific conditions, x-ray diffraction from ex-
ceptionally long-lived electronic excited states in
molecules has already been observed experimen-
tally.31–34 We show that even comparatively small
changes in the electronic state of molecules are
sufficient to leave signatures in the diffraction pat-
tern, making it possible, at least in principle, to
observe the changes in electronic state that accom-
pany a chemical reaction.

2 Theory

2.1 Elastic x-ray scattering
The total x-ray scattering cross section for an Nel-
electron system, according to Fermi’s golden rule,
can be written as,35,36

dI
dΩ

=

(
dI
dΩ

)
Th

∑
n

(
ωn

ω0

) ∣∣∣∣∣∣∣〈Ψn|

Nel∑
j=1

eıqr j |Ψα〉

∣∣∣∣∣∣∣
2

, (1)

where (dI/dΩ)Th =
(
e2/mc2

)
K is the Thomson

cross section for an electron with m and e the elec-
tron mass and charge respectively, c the velocity
of light, and K the polarization factor. Further-
more, ωn and ω0 are the frequencies of scattered
and incident x-rays, and Ψn and Ψα are the wave
functions of the nth final and the initial state. The
elastic scattering term in Eq. (1), for n = α, corre-
sponds to the coherent scattering which plays a key
role in x-ray structural determination.37 This term

k0

k

φ

θ z

x

y

Figure 1: Schematic representation of the experi-
mental geometry. The incoming wave vector k0 =

(0, 0, kz) (in green) is aligned with the z-axis, and
the scattered wave vector k(θ, φ) (in blue) is de-
fined in terms of the radial, θ, and the azimuthal,
φ, scattering angles, both defined relative to the di-
rection of k0. The polarization direction of the ex-
citation /alignment laser, when present, defines the
x-axis.

is commonly expressed by the molecular form fac-
tor, f 0(q), defined as

f 0(q) = 〈Ψα|

Nel∑
j=1

eıqr j |Ψα〉, (2)

where the momentum transfer vector, q(θ, φ) =

k0−k, is defined as the difference between the inci-
dent and the scattered wave vectors, with |k| = |k0|

for elastic scattering. The scattering angles θ (ra-
dial) and φ (azimuthal) give the direction of scat-
tered radiation relative to the incoming x-ray, as
shown in Fig. 1. For elastic scattering the ampli-
tude of the scattering vector is |q| = 2|k0| sin θ/2,
i.e. it only depends on the radial scattering angle θ
with values 0 ≤ |q| ≤ 2|k0|. Following Eq. (1), the
intensity of the elastic kinematic diffraction from
an atom or molecule is proportional to the square
amplitude of the scattering form factor,

∣∣∣ f 0(q)
∣∣∣2.

The focus of this paper is the elastic scattering
specific to a particular geometry and electronic
state of the molecule, meaning that the scattering
factor is taken to be instantaneous and therefore
time-independent. The form factor in Eq. (2) can
be shown to be the Fourier transform of the elec-
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tron density,37

f 0(q; R̄, α) =

∫
ρ(Nel)

tot (r; R̄, α) eıqrdr, (3)

and it therefore depends parametrically on the
electronic state α of the molecule, and on the
Nat nuclear coordinates R̄ = (R1, . . . ,RNat), with
Rγ = (xγ, yγ, zγ). The key quantity in Eq. (3) is
the total electron density, ρ(Nel)

tot (r; R̄, α), with Nel

the number of electrons. It is worth noting that
f 0(q ≡ 0; R̄, α) = Nel by definition. Approximate
corrections for the inelastic scattering, per atom,
have been calculated and tabulated using Waller-
Hartree theory38–40 and can be added to the coher-
ent scattering.

In terms of time-dependent dynamics, the treat-
ment embodied by Eq. (3) can be extended by
calculating a time-dependent form factor, f 0(q, t),
that changes as the instantaneous electron density
deforms. In doing this, it should be noted that
when coherent quantum dynamics is probed by
very short duration (large bandwidth) x-ray pulses,
this approach produces incorrect results,28,41,42 as
recently demonstrated computationally for elec-
tronic wave packets in the hydrogen atom.43 In
brief, the large bandwidth makes it difficult to dis-
tinguish elastic from inelastic contribution to scat-
tering. However, the time-dependent form fac-
tor approach remains applicable when the dura-
tion of the coherent x-ray pulses is short com-
pared to the time-scale for nuclear motion, yet suf-
ficiently long that the scattering cross-terms be-
tween different electronic states average out,28,41,42

or when low-coherence x-ray sources are consid-
ered as in the case of time-resolved experiments at
synchrotrons.44

A widespread approximation in both x-ray and
electron diffraction, known as the independent
atom model (IAM),37 is to express the electron
density as a sum of single-atom densities centered
at each nuclear coordinate Rγ for a given molecu-
lar geometry. This results in the total form factor
being a sum of atomic form factors,

f IAM(q; R̄) =

Nat∑
γ=1

f 0
γ (q)eıqRγ , (4)

where f 0
γ (q) is the scattering form factor for each

isolated atom γ in its ground state40 and Rγ is the
corresponding nuclear coordinate. The IAM ap-
proximation ignores the details of the electronic
structure of the molecule, in particular the valence
electrons responsible for chemical bonding.

In the present paper the form factor is deter-
mined analytically from the electron density via
the ab initio wave function. We call this ab ini-
tio x-ray diffraction (AIXRD). Diffraction patterns
calculated in this manner account for the specifics
of each electronic state and the arrangement of
the valence electrons, which ultimately is respon-
sible for bonding and chemical reactivity. From
the point of view of gas-phase experiments, we
show that going beyond the IAM approximation
is particularly valuable when a degree of spatial
or rotational alignment is present.23,45–48 We pro-
ceed by defining the ab initio electron density,
then show how the required Fourier transform of
the electron density can be calculated efficiently,
and finally present the results for a number of
different molecules. This extends previous work
by Debnarova et al.49 by deriving general ana-
lytic expressions for the Fourier transform of any
Gaussian-type orbital, by examining the scattering
from multiconfigurational wave functions, in par-
ticular in the context of excited states, and by in-
vestigating the relative merits, including computa-
tional efficiency and accuracy, of the IAM, the an-
alytical AIXRD approach, and calculations using
numerical FFT algorithms.

2.2 Electron density
In multiconfigurational ab initio theory the valence
electrons are distributed over molecular orbitals in
an active space which consists of electron config-
urations represented by Slater determinants. The
multiconfigurational electronic state is therefore
expanded as,

Ψα =

Nconf∑
i=1

cα,iΦi
S D, (5)

where the cα,i are the configuration interaction co-
efficients, Nconf is the number of configurations in-
cluded in the expansion, and Φi

S D are the Slater
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determinants for each configuration i, given by

Φi
S D =

1
√

N!

∑
P

(−1)PP Φi
H, (6)

with P the pair-wise permutation operator acting
on the Hartree product Φi

H = ui
1(q1) . . . ui

N(qN).
The spin orbitals ui

j(q j) are the products of the spin
functions χ( j) and the set of orthonormal spatial
molecular orbitals, φ j(r j), used to construct each
Slater determinant.

The electron density is given by the operator,

ρ̂(r) =

Nel∑
j=1

δ(r − r j), (7)

which gives the total electron density as the sum
of two components,

ρ(Nel)
tot (r; R̄, α) = 〈Ψα| ρ̂ |Ψα〉

= ρ(Nel)
diag (r; R̄, α) + ρ(0)

nd (r; R̄, α). (8)

The diagonal component, ρ(Nel)
diag , is a sum of the

electron densities, ρ(Nel)
i , for each of the Slater de-

terminants,

ρ(Nel)
diag (r; R̄, α) =

Nconf∑
i=1

c2
α,i ρ

(Nel)
i (r; R̄, α)

=

Nconf∑
i=1

c2
α,i

NMO∑
j=1

bi
j

∣∣∣φ j(r)
∣∣∣2 =

NMO∑
j=1

a j|φ j(r)|2, (9)

where the molecular orbitals have integer occu-
pancies bi

j ∈ {0, 1, 2} that are different for each con-
figuration. Partial occupancies for the NMO molec-
ular orbitals are a j =

∑Nconf
i=1 c2

α,ib
i
j. The nondiago-

nal component in Eq. (8), ρ(0)
nd , corresponds to the

cross-terms between different Slater determinants,

ρ(0)
nd (r; R̄, α) =

Nconf∑
i=1

Nconf∑
j=1

cα,icα, j ρ
(0)
i j (r; R̄, α). (10)

Since ρ̂(r) in Eq. (7) is an one-electron operator,
the cross-terms ρ(0)

i j (r; R̄, α) in Eq. (10) are nonzero
only when the two Slater determinants differ by
one single spatial orbital, in which case they eval-
uate to,

ρ(0)
i j (r; R̄, α) = φi′(r)φ j′(r), (11)

where i′ and j′ are the indices of the spatial orbitals
that are different in the two configurations. Note
that we assume that orbitals and coefficients are
real-valued throughout, e.g. cα,i = c∗α,i and φi′ = φ∗i′ .
The nondiagonal electron density ρ(0)

nd (r; R̄, α) does
not contribute to the net electron density since the
integral of ρ(0)

nd (r; R̄, α) is zero.
The basis set used to represent the spatial wave

functions is of particular importance as Gaussian-
type orbitals (GTOs) allow for many integrals, in-
cluding the required Fourier integrals, to be cal-
culated analytically. The molecular orbitals φ j(r j)
are obtained as linear combinations of the basis
functions Gk(r),

φ j(r) =

NBF∑
k=1

M
j
kGk(r), (12)

where M j
k are the molecular orbital expan-

sion coefficients determined by solving the
Schrödinger eigenvalue equation via the ab ini-
tio self-consistent field (SCF) procedure, and the
total number of basis functions Gk(r) is NBF, with
j ∈ NMO = NBF. The density associated with each
molecular orbital is therefore,

|φ j(r)|2 =

NBF∑
k1=1

NBF∑
k2=1

M
j
k1
M

j
k2

Gk1(r) Gk2(r), (13)

with a very similar expression for the cross-terms
in Eq. (11), except that the term M j

k1
M

j
k2

in Eq.
(13) is replaced by Mi′

k1
M

j′

k2
. Each basis function

Gk(r), in turn, is a contraction of GTOs, gs(r), such
that,

Gk(r) =

nk∑
s=1

µk
s gk

s (r), (14)

where µk
s are the basis set contraction coefficients

for the primitive GTOs. The product Gk1(r) Gk2(r)
in Eq. (13) becomes,

Gk1(r)Gk2(r) =

nk1∑
s1=1

nk2∑
s2=1

µk1
s1
µk2

s2
gk1

s1
(r)gk2

s2
(r). (15)

A Cartesian Gaussian-type orbital centered at co-
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ordinates rs = (xs, ys, zs) has the form,

gs(r) = Ns(x − xs)ls(y − ys)ms(z − zs)nse−γs(r−rs)2
,

(16)
with exponent γs, Cartesian orbital angular mo-
mentum Ls = ls + ms + ns, and normalisation con-
stant Ns,

Ns =

(
2
π

)3/4 2(ls+ms+ns) γ(2ls+2ms+2ns+3)/4
s

[(2ls − 1)!!(2ms − 1)!!(2ns − 1)!!]1/2 .(17)

Using the Gaussian product theorem50 for the
product gk1

s1(r)gk2
s2(r) in Eq. (15) we get,

gk1
s1

(r)gk2
s2

(r) = Kk1k2
s1 s2

gk1k2
s1 s2

(r), (18)

where Kk1k2
s1 s2 = exp[−γk1

s1γ
k2
s2 (rk1

s1 − rk2
s2)

2/(γk1
s1 + γk2

s2 )]
and the new Gaussian, gk1k2

s1 s2(r), has the exponent
γk1k2

s1 s2 = γk1
s1 + γk2

s2 , and is centered at rk1k2
s1 s2 = (γk1

s1 rk1
s1 +

γk2
s2 rk2

s2)/(γ
k1
s1 + γk2

s2 ). The final step is to combine the
equations above to express the total electron den-
sity, ρ(Nel)

tot (r; R̄, α), as a sum over Gaussian func-
tions that are products of GTOs. This is done in
the next section.

2.3 Fourier Transforms
The scattering form factor in Eq. (3) is the Fourier
transform of the total electron density as given by
Eq. (8),

f 0(q; R̄, α) = Fr
[
ρ(Nel)

tot (r; R̄, α)
]

(q)

= f 0
diag(q; R̄, α) + f 0

nd(q; R̄, α).(19)

From Eqs. (9), (13), (15), and (18), the form factor
f 0
diag, which corresponds to the diagonal electron

density ρ(Nel)
diag , is given as,

f 0
diag(s; R̄, α) =

NMO∑
j=1

a j

NBF∑
k1,k2

M
j
k1
M

j
k2

nk1 ,nk2∑
s1,s2

µk1
s1
µk2

s2
Kk1k2

s1 s2

× Fr[gk1k2
s1 s2

(r)](q). (20)

The form factor f 0
nd, corresponding to the nondi-

agonal density ρ(0)
nd , is similarly obtained by using

Eqs. (10) - (11) instead of Eq. (9),

f 0
nd(s; R̄, α) =

NA∑
i, j

δi j cα,icα, j
NBF∑
k1,k2

Mi′
k1
M

j′

k2

nk1 ,nk2∑
s1,s2

µk1
s1
µk2

s2

× Kk1k2
s1 s2
Fr[gk1k2

s1 s2
(r)](q), (21)

where the delta function δi j is 1 when the two de-
terminants i and j differ by one spatial orbital only.

Since the Cartesian coordinates (x, y, z) are lin-
early independent and each Gaussian function can
be written as a product of x, y and z components,

gk1k2
s1 s2

(r) =
∏

r′=x,y,z

gk1k2
s1 s2

(r′), (22)

the problem is reduced to the solution of one-
dimensional Fourier transforms Fx

[
gk1k2

s1 s2(x)
]

(q).
These can be determined analytically, making
computations efficient. The one-dimensional
Gaussians to be Fourier transformed take the gen-
eral form,

g(x; l) = xle−γx2
, (23)

where l is the Cartesian angular momentum quan-
tum number. Solutions for increasing values of
l can be obtained recursively via the standard
Fourier relation,

Fx
[
x f (x)

]
(q) = −ı

d
dq
Fx

[
f (x)

]
(q). (24)

Using Eq. (24) it is possible to derive a general
formula for the Fourier transform of Eq. (23) as,

Fx
[
g(x; l)

]
(q) =

ıl
√
πe−q2/4γ

2lγ(2l+1)/2

l/2∑
p=0

(−1)p l!γpql−2p

(l − 2p)!p!
,

(25)
which is valid for any integer l such that l ≥ 0.
The Fourier transform for Gaussians centered at
any arbitrary coordinate x0 can be found using the
standard Fourier shift relation Fx

[
f (x − x0)

]
(q) =

Fx
[
f (x)

]
(q) exp(ıqx0). Specific solutions for the

Fourier transform of the product of two GTOs as
they appear in Eq. (18) for cumulative values of
l = l1 + l2 up to l = 4 are provided in Table 1.
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Table 1: Fourier transforms of the product of two
GTOs, g12(x; l1, l2) = (x− x1)l1(x− x2)l2e−γ12(x−x12)2

,
with γ12 = γ1 +γ2 and x12 = (γ1x1 +γ2x2)/γ12. The
factor a in the table is a = (ıq/2γ12) + x12.

l1 l2 Fx[g12(x; l1, l2)](q)

0 0 G00(q) =
√

π
γ12

e−
γ1γ2
γ12

(x1−x2)2
eisx x12e−s2

x/4γ12

1 0 (a − x1) G00(q)

2 0
(
a2 + 1

2γ12
− 2x1a + x2

1

)
G00(q)

1 1
(
a2 + 1

2γ12
− (x1 + x2)a + x1x2

)
G00(q)

3 0
{
a3 − 3x1a2 +

(
3x2

1 + 3
2γ12

)
a

−
3x1
2γ12
− x3

1

}
G00(q)

2 1
{
a3 − (2x1 + x2)a2 +

(
x2

1 + 2x1x2

+ 3
2γ12

)
a −2x1+x2

2γ12
− x2

1x2

}
G00(q)

4 0
{
a4 − 4x1a3 +

(
6x2

1 + 3
γ12

)
a2

−
(
4x3

1 + 6x1
γ12

)
a +

3x2
1

γ12
+ x4

1 + 3
4γ2

12

}
G00(q)

3 1
{
a4 − (3x1 + x2)a3 + 3

(
x2

1 + x1x2

+ 1
γ12

)
a2 −

(
x3

1 + 3x2
1x2 + 9x1+3x2

2γ12

)
a

+
3x1 x2+3x2

1
2γ12

+ x3
1x2 + 3

4γ2
12

}
G00(q)

2 2
{
a4 − 2(x1 + x2)a3 +

(
3
γ12

+ x2
1 + x2

2

+4x1x2) a2 −
(
2x2

1x2 + 2x1x2
2 +

3(x1+x2)
γ12

)
a

+
x2

1+x2
2+4x1 x2

2γ12
+ x2

1x2
2 + 3

4γ2
12

}
G00(q)

3 Results and Discussion

3.1 Molecular geometry, basis sets
and the IAM

Structural dynamics,24 or even static diffraction
from aligned molecules,23,45 is the most obvious
target for new gas-phase x-ray diffraction experi-
ments, since molecular geometry and changes in
the molecular geometry leave strong signatures in
the diffraction pattern. This is directly linked to
the fact that each nucleus is strongly associated
with a large number of electrons, in particular the
core electrons, which track the motion of the nu-
clei closely. This is exploited in the independent

(a) trans (b)

(c) cis (d)

(e) cyclo (f)

Figure 2: Molecular geometry (left column) and
x-ray diffraction (right column) for trans-, cis- and
cyclo-butadiene. The diffraction, | f 0(q; R̄, α)|2,
shown in 2b, 2d and 2f is calculated for 1.3 Å x-
rays using CASSCF ab initio wave functions ob-
tained with the 6-31G(d,p) basis set. The scat-
tering geometry is as shown in Fig. 1, with the
molecules in the xy-plane. The scattering is given
in terms of the radial angle θ (or equivalently the
radius |q|) and the azimuthal angle φ.

atom model, where the diffraction only depends on
the relative positions of the individual atoms. The
effect of the molecular geometry on the diffraction
pattern is illustrated by the trans and cis isomers of
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butadiene, C4H6, shown in Figure 2. The molec-
ular geometries and the associated diffraction pat-
terns shown have been calculated using the com-
plete active space self-consistent field (CASSCF)
method51 in MOLPRO52 at the CASSCF(4,4)/6-
31G(d,p) level, with 4 π-orbitals and 4 electrons
in the active space. The energy of the geometry-
optimized ground state is Etrans = −154.985878
a.u. for the trans and Ecis = −154.980896 a.u. for
the cis isomer. The diffraction is calculated via Eq.
(3) using Eq. (19), and is shown as | f 0(q; R̄, α)|2.
Here, and onwards, a x-ray wave length of 1.3 Ȧ
is assumed, meaning that the maximum value of
scattering angle θ = π corresponds to |q| = 9.67
Ȧ−1. As can be seen in Fig. 2, changes in ge-
ometry lead to significant changes in the diffrac-
tion, demonstrating the feasibility of tracking for
instance the isomerization of butadiene by x-ray
diffraction.

Figure 2 includes cyclo-butadiene, C4H4, cal-
culated at the same level of theory with the
energy of the geometry-optimized ground state
Ecyclo = −154.716941 a.u.. The cyclo-butadiene
is not square but in a rectangular geometry due to
the Jahn-Teller effect.53 Comparing the diffraction
patterns for the three forms of butadiene shown
in Fig. 2, it is evident that the point group of
each molecule is reflected in the diffraction pat-
tern. The molecular point groups are C2h, C2v, and
D2h for trans-, cis- and cyclo-butadiene. Overall,
the diffraction patterns retain the same symmetry
elements as that of the molecule, except that in
the case of the diffraction pattern of cis-butadiene
shown in Fig. 2d an extra inversion appears be-
cause mirror images of this molecule give the same
diffraction pattern. It is well worth noting, though,
that with limited alignment such point-group sym-
metries will be lost.

Since the molecular geometry exerts such a
strong influence on the diffraction pattern, one
may ask if it is worthwhile to go beyond the in-
dependent atom model. In Fig. 3a, the difference
between the IAM diffraction calculated by Eq. (4)
and the AIXRD (ab initio x-ray diffraction) calcu-
lated via Eq. (3) from the ab initio wave function,
are shown for benzene. The geometry and elec-
tronic structure of the benzene molecule are calcu-
lated at the CASSCF(6,6)/6-31G(d,p) level of ab
initio theory, with 6 π-orbitals and six electrons

(a) Benzene diffraction: | f6−31G(d,p)|
2 − | fIAM |

2

(b) Benzene diffraction: | f6−31G(d,p)|
2 − | fS TO−3G |

2|

Figure 3: Comparison of diffraction patterns
for benzene calculated at different levels of the-
ory. (a) CASSCF(6,6)/6-31G(d,p) compared to
the independent atom model (IAM), | f6−31G(d,p)|

2 −

| fIAM |
2, with a 45% maximum difference. (b)

CASSCF(6,6)/6-31G(d,p) compared to HF/STO-
3G, | f6−31G(d,p)|

2 − | fS TO−3G|
2, with a 9% maximum

difference.

in the active space. The energy of the geometry-
optimized ground state is Ebenzene = −230.786833
a.u. and the C-C bond lengths are 1.396 Å. The
maximum difference between the ab initio diffrac-
tion and the IAM is 45% in Fig. 3a. The differ-
ences are particularly pronounced in specific re-
gions, corresponding to specific pixels on the de-
tector in a would-be experiment. As mentioned
earlier, the origin of the difference between the
AIXRD and the IAM are the valence electrons in
benzene.
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Next, we examine the effect of the level of theory
on the diffraction pattern. In Fig. 3b, the diffrac-
tion pattern calculated at the CASSCF(6,6)/6-
31G(d,p) level (i.e. the same as in Fig. 3a) is
compared to diffraction calculated from the corre-
sponding Hartree-Fock (HF) STO-3G wave func-
tion. Here, the maximum difference is signifi-
cantly smaller and amounts to approximately 9%.
Since the computer time required for the diffrac-
tion calculations scales with the square of the num-
ber of Gaussian primitives (GTOs) included in the
wave function, this means that HF/STO-3G consti-
tutes a good compromise if computational speed is
of the essence and the molecule is in the electronic
ground state. In practice, the calculation of the
diffraction pattern from a HF/STO-3G wave func-
tion is approximately four times faster than from
the corresponding CASSCF(6,6)/6-31G(d,p) wave
function. Multiconfigurational methods, such as
configuration interaction (CI) or CASSCF, are
computationally expensive and require larger basis
sets than the minimal STO-3G to produce accurate
results, but are necessary in order to calculate ex-
cited states accurately. Although AIXRD consti-
tutes a significant improvement over IAM diffrac-
tion patterns already at comparatively low levels
of ab initio theory, it is necessary to use high-level
ab initio theory to accurately reproduce the diffrac-
tion from electronically excited molecules. The
possibility of identifying the electronic state of
molecules based on x-ray diffraction is discussed
in the next section.

3.2 Electronic structure in diffraction
One strength of AIXRD is its ability to predict
the diffraction pattern for excited states and indi-
vidual molecular orbitals. The diffraction patterns
for individual molecular orbitals, as demonstrated
by σ and π∗ molecular orbitals in O2 and assum-
ing single electron occupancy, are shown in Fig.
4. The orbitals are calculated for the optimised
geometry at the CASSCF(8,8)/6-31G(d,p) level,
with 4 π and 4 σ orbitals and 8 electrons in the
active space, with the ground state energy at the
optimized geometry EO2 = −149.663091 a.u. and
the bond length 1.245 Å. Characteristic diffraction
patterns for each molecular orbital type (σ, σ∗, π,
π∗) can be determined, and the appearance of dif-

(a) σ orbital (b) σ orbital diffraction

(c) π∗ orbital (d) π∗ orbital diffraction

Figure 4: O2 molecular orbitals (red and blue rep-
resent different phases) and their diffraction. (a)
σ-bonding orbital, (b) σ orbital diffraction pat-
tern, (c) π∗-antibonding orbital, and (d) π∗ orbital
diffraction pattern.

fuse orbitals or dominant bonds can be studied by
x-ray diffraction combined with AIXRD.

The more pertinent question is if it is possi-
ble to identify the electronic state of a molecule,
or at least detect changes in the electronic state,
by x-ray diffraction. The difficulty lies in the
comparatively small number of valence electrons
that change configuration during a transition be-
tween two electronic states, compared to the num-
ber of chemically inert electrons, which therefore
dominate the diffraction signal. Especially dur-
ing chemical reactions that are accompanied by
structural changes, such as for instance a photo-
chemical ring-opening or an isomerization reac-
tion, it is non-trivial to distinguish the changes in
the diffraction signal that are indicative of changes
in the electronic configuration and those that are
due to changes in geometry. Furthermore, experi-
ments only excite a fraction of the molecules and
there will always be a background of ground state
molecules, which must be subtracted.24,28
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(a) Diffraction from the S 1 state of cyclohexadiene

(b) Difference diffraction pattern for states S 1 and S 0

Figure 5: Diffraction from electronically excited
states in 1,3-cyclohexadiene. (a) The diffraction
pattern, | f 0(q; R̄0, S 1)|2, for the first singlet S 1 ex-
cited state in the ground state geometry. (b) The
difference diffraction pattern, | f 0(q; R̄0, S 1)|2 −
| f 0(q; R̄0, S 0)|2, between ground and first excited
states. Red areas are characteristic of the excited
state and blue areas of the electronic ground state.

Figure 5a shows the diffraction pattern of
the first singlet excited state, S 1, of 1,3-
cyclohexadiene obtained by vertical excitation
from the ground state, S 0. The ground state
geometry was optimised at the CASSCF(6,6)/6-
31G(d,p) level of theory, with 4 π-orbitals and 4
π-electrons plus 2 σ-orbitals and 2 σ-electrons in
the active space,54 and then the ground and excited
states were calculated at the optimized geometry.
The ground and excited state energies at the opti-
mized geometry are ES 0 = −231.916756 a.u. and

ES 1 = −231.668618 a.u., respectively. Although
the differences in the diffraction pattern between
the ground and the first excited states, shown in
Fig. 5b, are not large in absolute terms, they are
nevertheless significant. The differences are par-
ticularly large in specific regions, shown in red
or blue in Fig. 5b. In some pixels, the change
in intensity, calculated as the ratio of | f 0(S 0)|2

and | f 0(S 1)|, is up to 40%. Of course, the calcu-
lated diffraction patterns are calculated for static
molecules, and in reality rotational and vibrational
motion will blur the signal. However, sufficient
differences to identify changes in the electronic
state of the molecule may persist even once full
rotational and vibrational averaging has been ac-
counted for. Future work will take these consider-
ations into account, but the results certainly high-
light the value of alignment in gas-phase diffrac-
tion experiments.

3.3 Numerical calculations using FFT

0 0.2 0.4 0.6 0.8 1
 θ / π

-50

0

50

100

A
b
 i
n
it
io

  
- 

 F
F

T

 FFT (1024 x 1024 x 512)
 FFT (2048 x 2048 x 1024)

Figure 6: Convergence of numerical calculations
using FFT. The difference between the diffraction
calculated by numerical FFT and the ab initio ana-
lytical approach, | f 0

AIXRD(q)|2−| f 0
FFT (q)|2, is shown.

The comparison is made for the ground state ben-
zene molecule as a function of the radial angle θ
with azimuthal angle φ = 0. The FFT has been cal-
culated on two different size electron density grids,
1024 × 1024 × 512 and 2048 × 2048 × 1024. The
error in the FFT calculation, relative the ab initio
calculation, is on the order of 2.7% for the larger
grid.

An alternative strategy to the analytic approach
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to the calculation of elastic scattering discussed
so far, is to represent the electron density in Eq.
(8) on a spatial grid with regular spacing ∆r and
to Fourier transform the density numerically using
a Fast Fourier Transform (FFT) algorithm.55 This
approach is conceptually simple and benefits from
the numerical efficiency of FFT algorithms. How-
ever, as we will demonstrate, its utility depends on
the accuracy of the results required.

In order to avoid problems with aliasing, which
can severely degrade the accuracy of the FFT,
one must ensure that the Fourier transformed sig-
nal is contained within the Nyquist critical fre-
quency qc = 1/2∆r, which is equivalent to saying
that the the grid spacing ∆r must be sufficiently
small to adequately represent the molecular elec-
tron density. However, in many cases the Nyquist
frequency is greater than 2|k0|, meaning that to
achieve the required resolution in the experimen-
tally relevant region 0 ≤ |q| ≤ 2|k0|, a large to-
tal number of grid points must be used. This can
be done by padding the electron density with trail-
ing zeros, while ensuring that the resulting number
of grid points, Ngrid, in each spatial direction is a
power of 2 for optimal performace of the FFT al-
gorithm.55 Since the three-dimensional FFT algo-
rithm scales as (Ngrid ln Ngrid)3, this quickly leads to
significantly slower computations than might have
been first anticipated. Additionally, there is a sub-
stantial overhead associated with the calculation of
the electron density grid, a step which is bypassed
in the analytic procedure since the Fourier trans-
form is calculated directly from the wave function.
A final advantage of the analytic approach is that
we can choose exactly for which values of q to cal-
culate the Fourier transform, and the transform is
only computed for those required values.

Fig. 6 shows the convergence of the FFT to the
analytic result for benzene, as a function of grid
size. Due to the inherent periodicity of the dis-
crete Fourier transforms, the FFT values deviate
more from the correct values close to the edge re-
gions. The addition of a very large number of
trailing zeros should in principle resolve this issue,
although at significant computational cost. The
larger grid in Fig. 6 reproduces the analytic results
with approximately 2.7% accuracy. The accuracy
could be improved further by increasing the grid
size, i.e. both the size of the electron density grid

and the number of trailing zeros, but the numeri-
cal FFT calculations then become quite slow due
to (Ngrid ln Ngrid)3 scaling and the increasing over-
head cost for calculating the electron density on
the grid.

4 Conclusions
We have shown how the diffraction pattern for
molecules can be calculated efficiently from ab
initio multiconfigurational wave functions. We de-
rive general analytical formulas for the Fourier
transform of the electron density associated with
any multiconfigurational wave function expressed
in a Gaussian-type orbital basis. The use of ana-
lytic formulas bypasses the need to represent the
electron density on a spatial grid followed by nu-
meric Fourier transforms, leading to accurate and
efficient calculations of elastic x-ray scattering.

The diffraction patterns calculated for isomers
of butadiene demonstrate the potential of x-ray
diffraction in tracking structural dynamics. We
quantify the advantage of predicting x-ray diffrac-
tion patterns directly from ab initio wave func-
tions (AIXRD) compared to the ubiquitous inde-
pendent atom model (IAM), and show that ac-
counting for the delocalized and bonding valence
electrons makes up to a 45% difference in specific
scattering directions for the benzene molecule. In
very isotropic samples, such as a hot gas, and for
structural dynamics that is confined to the ground
electronic state, diffraction patterns predicted by
IAM are likely to be sufficient. However, we show
that IAM can be improved upon at modest compu-
tational expense by calculating AIXRD using ba-
sic electronic structure methods such as Hartree-
Fock SCF with a small basis set. Such calcula-
tions already improve significantly on the results
produced by IAM, and are particularly worthwhile
when some degree of alignement or orientation is
present in the sample.

For electronically excited states one must use
multiconfigurational electronic structure methods
to obtain reasonable accuracy in the excited state
wave functions and energies. As these methods
require larger-than-minimal basis sets to produce
accurate results, the computational effort to cal-
culate the diffraction patterns also increases. On
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the upside, it is clear that, at least for molecules
with a degree of rotational or spatial alignment,
it should in principle be possible to detect sig-
nature changes in the diffraction pattern that cor-
respond to transitions between electronic states,
for instance during a photochemical reaction. At
sufficient experimental resolution, one can even
envision characterizing spectroscopic states based
on diffraction.30 Clearly, significant experimental
challenges remain and the interpretation of the ex-
perimental data will be challenging, in particular
in terms of separating out contributions from nu-
clear motion and changes in the electronic struc-
ture of the molecule.

With regards to computations, the conclusion is
that we have a hierarchy of approaches. The in-
dependent atom model is the fastest by some mar-
gin, and gives adequate results in many situations.
Results of intermediate quality are obtained most
quickly by the numerical FFT approach. An ad-
vantage of the FFT approach is that it is not lim-
ited to Gaussian-type orbital basis sets, and can
therefore straightforwardly be combined with e.g.
plane-wave density functional theory calculations.
The FFT approach holds a particular advantage
over the analytical approach when fully rotation-
ally averaged diffraction is required, as the rota-
tional averaging can be done on the electron den-
sity grid, and then only a single one-dimensional
FFT must be performed. The analytical approach
is superior whenever high accuracy is required.
For instance, capturing the comparatively small
differences between ground and excited states with
the numerical FFT approach would be challeng-
ing. In the context of time-dependent x-ray scat-
tering, where the signals are quite weak in terms
of the percent change in intensity, the added confi-
dence from having accurate elastic cross-sections
given by the analytic approach is valuable.

5 Future prospects
In future work, we plan to account for the full elec-
tronic and rotational-vibrational nuclear dynamics
during a photochemical reaction, and determine
the level of detail that is retained in the diffraction
once the full averaging over nuclear and electronic
degrees of freedom has been accounted for. We

will also examine inelastic scattering effects, par-
tially within the context of Fermi’s Golden Rule
via Waller-Hartree theory,38 but also in the con-
text of coherent dynamics probed by ultrashort
coherent x-ray pulses.41 One area of intense re-
search at the new XFELs, such as the LCLS and
the European XFEL, is crystal-free protein struc-
ture determination.17–19 It is likely that such stud-
ies would benefit from ab initio diffraction pat-
terns, along the lines presented in this paper, to
interpret their diffraction data, and perhaps also by
accounting for radiation damage explicitly.56 Fi-
nally, one should note that the theory presented in
this paper can easily be modified to account for
elastic electron scattering, rather than x-ray scat-
tering, by replacing the electron density in Eq. (19)
(or equivalently Eq. (3)) with a charge density that
includes the nuclear charges.57–60

Structural dynamics based on time-resolved
elastic x-ray scattering has the potential to advance
our experimental and theoretical understanding of
how nuclei and electrons move during chemical
reactions, and in particular our understanding of
photochemical reactions, taking us towards the
ultimate goal of de novo design of materials and
molecules with specific optical, electric, photo-
chemical or mechanical properties.
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