12 research outputs found

    Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus

    No full text
    Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum

    MYB43 in Oilseed Rape (Brassica napus) Positively Regulates Vascular Lignification, Plant Morphology and Yield Potential but Negatively Affects Resistance to Sclerotinia sclerotiorum

    No full text
    Arabidopsis thaliana MYB43 (AtMYB43) is suggested to be involved in cell wall lignification. PtrMYB152, the Populus orthologue of AtMYB43, is a transcriptional activator of lignin biosynthesis and vessel wall deposition. In this research, MYB43 genes from Brassica napus (rapeseed) and its parental species B. rapa and B. oleracea were molecularly characterized, which were dominantly expressed in stem and other vascular organs and showed responsiveness to Sclerotinia sclerotiorum infection. The BnMYB43 family was silenced by RNAi, and the transgenic rapeseed lines showed retardation in growth and development with smaller organs, reduced lodging resistance, fewer silique number and lower yield potential. The thickness of the xylem layer decreased by 28%; the numbers of sclerenchymatous cells, vessels, interfascicular fibers, sieve tubes and pith cells in the whole cross section of the stem decreased by 28%, 59%, 48%, 34% and 21% in these lines, respectively. The contents of cellulose and lignin decreased by 17.49% and 16.21% respectively, while the pectin content increased by 71.92% in stems of RNAi lines. When inoculated with S. sclerotiorum, the lesion length was drastically decreased by 52.10% in the stems of transgenic plants compared with WT, implying great increase in disease resistance. Correspondingly, changes in the gene expression patterns of lignin biosynthesis, cellulose biosynthesis, pectin biosynthesis, cell cycle, SA- and JA-signals, and defensive pathways were in accordance with above phenotypic modifications. These results show that BnMYB43, being a growth-defense trade-off participant, positively regulates vascular lignification, plant morphology and yield potential, but negatively affects resistance to S. sclerotiorum. Moreover, this lignification activator influences cell biogenesis of both lignified and non-lignified tissues of the whole vascular organ

    Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation

    No full text
    Abstract: While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1 degrees C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling. The mechanisms of warming affecting genes related to carbon and nitrogen cycles in rhizosphere and non-rhizosphere soils. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil.imag

    Chia (Salvia hispanica) experiment at a 30˚ N site in Sichuan Basin, China

    No full text
    ABSTRACT: The mysterious ancient Mesoamerican Indian crop chia (Salvia hispanica) is revived and expanding worldwide due to its richness of valuable nutraceuticals such as α-linolenic acid (ALA), antioxidants, food fiber, gels, and proteins. We carried out a pilot experiment on chia planting in non-frost Sichuan Basin, at Hechuan Base (30˚0′ 43″ N, 106˚7′ 41″ E, 216 m), Southwest University, Chongqing, China. The split-plot trial contained two factors, 3 spring-summer sowing times as main plots, and 6 densities as subplots, with 3 replicates. Phenological, botanical, adversity, yield, and seed quality traits were investigated. Plants were very tall, suffered from lodging, and flowered in mid-October. Sichuan Basin can be considered as a north edge for growing chia, with low yield (680 kg/hectare) because of insufficient seed filling and maturation in autumn-winter season (1000-seed weight of 1.14 g). However, its ALA content is 5 percent points higher than the seed-donor commercial bottle (65.06%/63.96% VS 59.35%/59.74% for black/white seeds), accompanied by decrease oleic and stearic acid, while linoleic acid and palmitic acid are equivalent. Considering its short-day habit, it is recommended to try sowing in middle summer (from late June to early August) to avoid too long growing period, excessive vegetative growth, and waste of field and climate resources caused by spring-summer sowing. Furthermore, winter sowing of chia with mulch cover could also be tried, with an expectation of harvesting in summer. Most importantly, only when the photoperiod-insensitive early flowering stocks are created, chia can be recommended as a low-risk crop to the farmers of this region

    Genome-wide identification AINTEGUMENTA-like (AIL) genes in Brassica species and expression patterns during reproductive development in Brassica napus L.

    No full text
    The AINTEGUMENTA-like (AIL) proteins, which belong to the AP2 family, play important roles in regulating the growth and development of plant organs. The AIL family has not yet been comprehensively studied in rapeseed (Brassica napus), an allotetraploid and model organism for the study of polyploid evolution. In the present study, 99 AIL family genes were identified and characterized from B. rapa, B. oleracea, B. napus, B. juncea, and B. nigra using a comprehensive genome-wide study, including analyses of phylogeny, gene structure, chromosomal localization, and expression pattern. Using a phylogenetic analysis, the AIL genes were divided into eight groups, which were closely related to the eight AtAIL genes, and which shared highly conserved structural features within the same subfamily. The non-synonymous/synonymous substitution ratios of the paralogs and orthologs were less than 1, suggesting that the AIL genes mainly experienced purifying selection during evolution. In addition, the RNA sequencing data and qRT-PCR analysis revealed that the B. napus AIL genes exhibited organ- and developmental stage-specific expression patterns. Certain genes were highly expressed in the developing seeds (BnaAIL1, BnaAIL2, BnaAIL5, and BnaAIL6), the roots (BnaANT, BnaAIL5, and BnaAIL6), and the stem (BnaAIL7B). Our results provide valuable information for further functional analysis of the AIL family in B. napus and related Brassica species

    Genome-Wide Association Study of Phenylalanine Derived Glucosinolates in Brassica rapa

    No full text
    Glucosinolates (GSLs) are sulfur-containing bioactive compounds usually present in Brassicaceae plants and are usually responsible for a pungent flavor and reduction of the nutritional values of seeds. Therefore, breeding rapeseed varieties with low GSL levels is an important breeding objective. Most GSLs in Brassica rapa are derived from methionine or tryptophan, but two are derived from phenylalanine, one directly (benzylGSL) and one after a round of chain elongation (phenethylGSL). In the present study, two phenylalanine (Phe)-derived GSLs (benzylGSL and phenethylGSL) were identified and quantified in seeds by liquid chromatography and mass spectrometry (LC-MS) analysis. Levels of benzylGSL were low but differed among investigated low and high GSL genotypes. Levels of phenethylGSL (also known as 2-phenylethylGSL) were high but did not differ among GSL genotypes. Subsequently, a genome-wide association study (GWAS) was conducted using 159 B. rapa accessions to demarcate candidate regions underlying 43 and 59 QTNs associated with benzylGSL and phenethylGSL that were distributed on 10 chromosomes and 9 scaffolds, explaining 0.56% to 70.86% of phenotypic variations, respectively. Furthermore, we find that 15 and 18 known or novel candidate genes were identified for the biosynthesis of benzylGSL and phenethylGSL, including known regulators of GSL biosynthesis, such as BrMYB34, BrMYB51, BrMYB28, BrMYB29 and BrMYB122, and novel regulators or structural genes, such as BrMYB44/BrMYB77 and BrMYB60 for benzylGSL and BrCYP79B2 for phenethylGSL. Finally, we investigate the expression profiles of the biosynthetic genes for two Phe-derived GSLs by transcriptomic analysis. Our findings provide new insight into the complex machinery of Phe-derived GSLs in seeds of B. rapa and help to improve the quality of Brassicaceae plant breeding

    Genome-Wide Identification of the <i>TIFY</i> Gene Family in <i>Brassiceae</i> and Its Potential Association with Heavy Metal Stress in Rapeseed

    No full text
    The TIFY gene family plays important roles in various plant biological processes and responses to stress and hormones. The chromosome-level genome of the Brassiceae species has been released, but knowledge concerning the TIFY family is lacking in the Brassiceae species. The current study performed a bioinformatics analysis on the TIFY family comparing three diploid (B. rapa, B. nigra, and B. oleracea) and two derived allotetraploid species (B. juncea, and B. napus). A total of 237 putative TIFY proteins were identified from five Brassiceae species, and classified into ten subfamilies (six JAZ types, one PPD type, two TIFY types, and one ZML type) based on their phylogenetic relationships with TIFY proteins in A. thaliana and Brassiceae species. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the TIFY family genes during the process of polyploidization, and most of these TIFY family genes (TIFYs) were subjected to purifying selection after duplication based on Ka/Ks values. The spatial and temporal expression patterns indicated that different groups of BnaTIFYs have distinct spatiotemporal expression patterns under normal conditions and heavy metal stresses. Most of the JAZIII subfamily members were highest in all tissues, but JAZ subfamily members were strongly induced by heavy metal stresses. BnaTIFY34, BnaTIFY59, BnaTIFY21 and BnaTIFY68 were significantly upregulated mostly under As3+ and Cd2+ treatment, indicating that they could be actively induced by heavy metal stress. Our results may contribute to further exploration of TIFYs, and provided valuable information for further studies of TIFYs in plant tolerance to heavy metal stress

    Metabolite Profiling and Transcriptome Analysis Provide Insight into Seed Coat Color in Brassica juncea

    No full text
    The allotetraploid species Brassica juncea (mustard) is grown worldwide as oilseed and vegetable crops; the yellow seed-color trait is particularly important for oilseed crops. Here, to examine the factors affecting seed coat color, we performed a metabolic and transcriptomic analysis of yellow- and dark-seeded B. juncea seeds. In this study, we identified 236 compounds, including 31 phenolic acids, 47 flavonoids, 17 glucosinolates, 38 lipids, 69 other hydroxycinnamic acid compounds, and 34 novel unknown compounds. Of these, 36 compounds (especially epicatechin and its derivatives) accumulated significantly different levels during the development of yellow- and dark-seeded B. juncea. In addition, the transcript levels of BjuDFR, BjuANS,BjuBAN, BjuTT8, and BjuTT19 were closely associated with changes to epicatechin and its derivatives during seed development, implicating this pathway in the seed coat color determinant in B. juncea. Furthermore, we found numerous variations of sequences in the TT8A genes that may be associated with the stability of seed coat color in B. rapa, B. napus, and B. juncea, which might have undergone functional differentiation during polyploidization in the Brassica species. The results provide valuable information for understanding the accumulation of metabolites in the seed coat color of B. juncea and lay a foundation for exploring the underlying mechanism

    Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus

    No full text
    Abstract Yellow-seed trait is a desirable breeding characteristic of rapeseed (Brassica napus) that could greatly improve seed oil yield and quality. However, the underlying mechanisms controlling this phenotype in B. napus plants are difficult to discern because of their complexity. Here, we assemble high-quality genomes of yellow-seeded (GH06) and black-seeded (ZY821). Combining in-depth fine mapping of a quantitative trait locus (QTL) for seed color with other omics data reveal BnA09MYB47a, encoding an R2R3-MYB-type transcription factor, as the causal gene of a major QTL controlling the yellow-seed trait. Functional studies show that sequence variation of BnA09MYB47a underlies the functional divergence between the yellow- and black-seeded B. napus. The black-seed allele BnA09MYB47aZY821, but not the yellow-seed allele BnA09MYB47aGH06, promotes flavonoid biosynthesis by directly activating the expression of BnTT18. Our discovery suggests a possible approach to breeding B. napus for improved commercial value and facilitates flavonoid biosynthesis studies in Brassica crops
    corecore