38 research outputs found

    One's own country and familiar places in the mind's eye:different topological representations for navigational and non-navigational contents

    Get PDF
    Visual mental imagery is a process that draws on different cognitive abilities and is affected by the contents of mental images. Several studies have demonstrated that different brain areas subtend the mental imagery of navigational and non-navigational contents. Here, we set out to determine whether there are distinct representations for navigational and geographical images. Specifically, we used a Spatial Compatibility Task (SCT) to assess the mental representation of a familiar navigational space (the campus), a familiar geographical space (the map of Italy) and familiar objects (the clock). Twenty-one participants judged whether the vertical or the horizontal arrangement of items was correct. We found that distinct representational strategies were preferred to solve different categories on the SCT, namely, the horizontal perspective for the campus and the vertical perspective for the clock and the map of Italy. Furthermore, we found significant effects due to individual differences in the vividness of mental images and in preferences for verbal versus visual strategies, which selectively affect the contents of mental images. Our results suggest that imagining a familiar navigational space is somewhat different from imagining a familiar geographical space

    Does spatial locative comprehension predict landmark-based navigation?

    Get PDF
    In the present study we investigated the role of spatial locative comprehension in learning and retrieving pathways when landmarks were available and when they were absent in a sample of typically developing 6- to 11-year-old children. Our results show that the more proficient children are in understanding spatial locatives the more they are able to learn pathways, retrieve them after a delay and represent them on a map when landmarks are present in the environment. These findings suggest that spatial language is crucial when individuals rely on sequences of landmarks to drive their navigation towards a given goal but that it is not involved when navigational representations based on the geometrical shape of the environment or the coding of body movements are sufficient for memorizing and recalling short pathways

    Virtual environments as memory training devices in navigational tasks for older adults.

    Get PDF
    Cognitive training approaches using virtual environments (VEs) might counter age-related visuospatial memory decline and associated difficulties in wayfinding. However, the effects of the visual design of a VE in route learning are not fully understood. Therefore, we created a custom-designed VE optimized for route learning, with adjusted levels of realism and highlighted landmark locations (MixedVE). Herein we tested participants' route recall performance in identifying direction of turn at the intersection with this MixedVE against two baseline alternatives (AbstractVE, RealisticVE). An older vs. a younger group solved the tasks in two stages (immediate vs. delayed recall by one week). Our results demonstrate that the MixedVE facilitates better recall accuracy than the other two VEs for both age groups. Importantly, this pattern persists a week later. Additionally, our older participants were mostly overconfident in their route recall performance, but the MixedVE moderated this potentially detrimental overconfidence. Before the experiment, participants clearly preferred the RealisticVE, whereas after the experiment, most of the younger, and many of the older participants, preferred the MixedVE. Taken together, our findings provide insights into the importance of tailoring visualization design in route learning with VEs. Furthermore, we demonstrate the great potential of the MixedVE and by extension, of similar VEs as memory training devices for route learning, especially for older participants

    Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants.

    No full text
    In the past 20 years, many studies in the cognitive neurosciences have analyzed human ability to navigate in recently learned and familiar environments by investigating the cognitive processes involved in successful navigation. In this study, we reviewed the main experimental paradigms and made a cognitive-oriented meta-analysis of fMRI studies of human navigation to underline the importance of the experimental designs and cognitive tasks used to assess navigational skills. We performed a general activation likelihood estimation (ALE) meta-analysis of 66 fMRI experiments to identify the neural substrates underpinning general aspects of human navigation. Four individual ALE analyses were performed to identify the neural substrates of different experimental paradigms (i.e., familiar vs. recently learned environments) and different navigational strategies (allocentric vs. egocentric). Results of the general ALE analysis highlighted a wide network of areas with clusters in the occipital, parietal, frontal and temporal lobes, especially in the parahippocampal cortex. Familiar environments seem to be processed by an extended temporal-frontal network, whereas recently learned environments require activation in the parahippocampal cortex and the parietal and occipital lobes. Allocentric strategy is subtended by the same areas as egocentric strategy, but the latter elicits greater activation in the right precuneus, middle occipital lobe and angular gyrus. Our results suggest that different neural correlates are involved in recalling a well-learned or recently acquired environment and that different networks of areas subtend egocentric and allocentric strategies.In the past 20 years, many studies in the cognitive neurosciences have analyzed human ability to navigate in recently learned and familiar environments by investigating the cognitive processes involved in successful navigation. In this study, we reviewed the main experimental paradigms and made a cognitive-oriented meta-analysis of fMRI studies of human navigation to underline the importance of the experimental designs and cognitive tasks used to assess navigational skills. We performed a general activation likelihood estimation (ALE) meta-analysis of 66 fMRI experiments to identify the neural substrates underpinning general aspects of human navigation. Four individual ALE analyses were performed to identify the neural substrates of different experimental paradigms (i.e., familiar vs. recently learned environments) and different navigational strategies (allocentric vs. egocentric). Results of the general ALE analysis highlighted a wide network of areas with clusters in the occipi

    Finding my own way: an fMRI single case study of a subject with developmental topographical disorientation

    No full text
    Developmental topographical disorientation (DTD) causes impaired spatial orientation and navigation from early childhood with no evidence of cerebral damage. Using fMRI and a landmark sequencing task, we investigated the hypothesis that Dr Wai's abnormal cerebral activation pattern was related to his peculiar behavioral profile. Although Dr Wai was able to correctly perform landmark sequencing, he showed a lack of activity in regions activated in all control subjects and activity in areas that were not activated in any control subject. These results are discussed in light of cognitive and functional model of navigation, with relevant implications for DTD physiology

    Do you like Arcimboldo's? Esthetic appreciation modulates brain activity in solving perceptual ambiguity

    No full text
    Esthetic experience is a unique, affectively colored, self-transcending subject-object relationship in which cognitive processing is felt to flow differently than during everyday experiences. Notwithstanding previous multidisciplinary investigations, how esthetic experience modulates perception is still obscure. We used Arcimboldo's ambiguous portraits to assess how the esthetic context organizes ambiguous percepts. The study was carried out using functional magnetic resonance imaging (fMRI) in healthy young volunteers (mean age 25.45; S.D. 4.51; 9 females), during both an explicit esthetic judgment task and an artwork/non-artwork classification task. We show that a distinct neural mechanism in the fusiform gyrus contributes to the esthetic experience of ambiguous portraits, according to the valence of the esthetic experience. Ambiguous artworks eliciting a negative esthetic experience lead to more pronounced activation of the fusiform face areas than ambiguous artworks eliciting a positive esthetic experience. We also found an interaction between task and ambiguity in the right superior parietal lobule. Taken together, our results demonstrate that a neural mechanism in the content-dependent brain regions of face processing underlies the esthetic experience of ambiguous portraits. Furthermore, they suggest that esthetic experience interacts with perceptual qualities of stimuli in the right superior parietal lobe, supporting the idea that esthetic experience arises from the interaction between top-down orienting of attention and bottom-up perceptual facilitation

    The parallel lives of autonomous systems: ASN allocations vs. BGP

    No full text
    Autonomous Systems (ASes) exist in two dimensions on the Internet: the administrative and the operational one. Regional Internet Registries (RIRs) rule the former, while BGP the latter. In this work, we reconstruct the lives of the ASes on both dimensions, performing a joint analysis that covers 17 years of data. For the administrative dimension, we leverage delegation files published by RIRs to report the daily status of Internet resources they allocate. For the operational dimension, we characterize the temporal activity of ASNs in the Internet control plane using BGP data collected by the RouteViews and RIPE RIS projects. We present a methodology to extract insights about AS life cycles, including dealing with pitfalls affecting authoritative public datasets. We then perform a joint analysis to establish the relationship (or lack of) between these two dimensions for all allocated ASNs and all ASNs visible in BGP. We characterize the usual behaviors, specific differences between RIRs and historical resources, as well as measure the discrepancies between the two "parallel"lives. We find discrepancies and misalignment that reveal useful insights, and we highlight through examples the potential of this new lens to help pinpoint malicious BGP activity and various types of misconfigurations. This study illuminates a largely unexplored aspect of the Internet global routing system and provides methods and data to support broader studies that relate to security, policy, and network management
    corecore