204 research outputs found
Homology class of a Lagrangian Klein bottle
It is shown that an embedded Lagrangian Klein bottle represents a non-trivial
mod 2 homology class in a compact symplectic four-manifold with
. (In versions 1 and 2, the last assumption was missing.
A counterexample to this general claim and the first proof of the corrected
result have been found by Vsevolod Shevchishin.) As a corollary one obtains
that the Klein bottle does not admit a Lagrangian embedding into the standard
symplectic four-space.Comment: Version 3 - completely rewritten to correct a mistake; Version 4 -
minor edits, added references; AMSLaTeX, 6 page
Verifiable conditions of -recovery of sparse signals with sign restrictions
We propose necessary and sufficient conditions for a sensing matrix to be
"s-semigood" -- to allow for exact -recovery of sparse signals with at
most nonzero entries under sign restrictions on part of the entries. We
express the error bounds for imperfect -recovery in terms of the
characteristics underlying these conditions. Furthermore, we demonstrate that
these characteristics, although difficult to evaluate, lead to verifiable
sufficient conditions for exact sparse -recovery and to efficiently
computable upper bounds on those for which a given sensing matrix is
-semigood. We concentrate on the properties of proposed verifiable
sufficient conditions of -semigoodness and describe their limits of
performance
Mirror Descent and Convex Optimization Problems With Non-Smooth Inequality Constraints
We consider the problem of minimization of a convex function on a simple set
with convex non-smooth inequality constraint and describe first-order methods
to solve such problems in different situations: smooth or non-smooth objective
function; convex or strongly convex objective and constraint; deterministic or
randomized information about the objective and constraint. We hope that it is
convenient for a reader to have all the methods for different settings in one
place. Described methods are based on Mirror Descent algorithm and switching
subgradient scheme. One of our focus is to propose, for the listed different
settings, a Mirror Descent with adaptive stepsizes and adaptive stopping rule.
This means that neither stepsize nor stopping rule require to know the
Lipschitz constant of the objective or constraint. We also construct Mirror
Descent for problems with objective function, which is not Lipschitz
continuous, e.g. is a quadratic function. Besides that, we address the problem
of recovering the solution of the dual problem
A learning-based algorithm to quickly compute good primal solutions for Stochastic Integer Programs
We propose a novel approach using supervised learning to obtain near-optimal
primal solutions for two-stage stochastic integer programming (2SIP) problems
with constraints in the first and second stages. The goal of the algorithm is
to predict a "representative scenario" (RS) for the problem such that,
deterministically solving the 2SIP with the random realization equal to the RS,
gives a near-optimal solution to the original 2SIP. Predicting an RS, instead
of directly predicting a solution ensures first-stage feasibility of the
solution. If the problem is known to have complete recourse, second-stage
feasibility is also guaranteed. For computational testing, we learn to find an
RS for a two-stage stochastic facility location problem with integer variables
and linear constraints in both stages and consistently provide near-optimal
solutions. Our computing times are very competitive with those of
general-purpose integer programming solvers to achieve a similar solution
quality
Mirror-Descent Methods in Mixed-Integer Convex Optimization
In this paper, we address the problem of minimizing a convex function f over
a convex set, with the extra constraint that some variables must be integer.
This problem, even when f is a piecewise linear function, is NP-hard. We study
an algorithmic approach to this problem, postponing its hardness to the
realization of an oracle. If this oracle can be realized in polynomial time,
then the problem can be solved in polynomial time as well. For problems with
two integer variables, we show that the oracle can be implemented efficiently,
that is, in O(ln(B)) approximate minimizations of f over the continuous
variables, where B is a known bound on the absolute value of the integer
variables.Our algorithm can be adapted to find the second best point of a
purely integer convex optimization problem in two dimensions, and more
generally its k-th best point. This observation allows us to formulate a
finite-time algorithm for mixed-integer convex optimization
Nuclear reactions in hot stellar matter and nuclear surface deformation
Cross-sections for capture reactions of charged particles in hot stellar
matter turn out be increased by the quadrupole surface oscillations, if the
corresponding phonon energies are of the order of the star temperature. The
increase is studied in a model that combines barrier distribution induced by
surface oscillations and tunneling. The capture of charged particles by nuclei
with well-deformed ground-state is enhanced in stellar matter. It is found that
the influence of quadrupole surface deformation on the nuclear reactions in
stars grows, when mass and proton numbers in colliding nuclei increase.Comment: 12 pages, 10 figure
Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings
We study the topology of Hamiltonian-minimal Lagrangian submanifolds N in C^m
constructed from intersections of real quadrics in a work of the first author.
This construction is linked via an embedding criterion to the well-known
Delzant construction of Hamiltonian toric manifolds. We establish the following
topological properties of N: every N embeds as a submanifold in the
corresponding moment-angle manifold Z, and every N is the total space of two
different fibrations, one over the torus T^{m-n} with fibre a real moment-angle
manifold R, and another over a quotient of R by a finite group with fibre a
torus. These properties are used to produce new examples of Hamiltonian-minimal
Lagrangian submanifolds with quite complicated topology.Comment: 14 pages, published version (minor changes
Rescaled coordinate descent methods for linear programming
We propose two simple polynomial-time algorithms to find a positive solution to Ax=0Ax=0 . Both algorithms iterate between coordinate descent steps similar to von Neumann’s algorithm, and rescaling steps. In both cases, either the updating step leads to a substantial decrease in the norm, or we can infer that the condition measure is small and rescale in order to improve the geometry. We also show how the algorithms can be extended to find a solution of maximum support for the system Ax=0Ax=0 , x≥0x≥0 . This is an extended abstract. The missing proofs will be provided in the full version
Templates for Convex Cone Problems with Applications to Sparse Signal Recovery
This paper develops a general framework for solving a variety of convex cone
problems that frequently arise in signal processing, machine learning,
statistics, and other fields. The approach works as follows: first, determine a
conic formulation of the problem; second, determine its dual; third, apply
smoothing; and fourth, solve using an optimal first-order method. A merit of
this approach is its flexibility: for example, all compressed sensing problems
can be solved via this approach. These include models with objective
functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or
a combination thereof. In addition, the paper also introduces a number of
technical contributions such as a novel continuation scheme, a novel approach
for controlling the step size, and some new results showing that the smooth and
unsmoothed problems are sometimes formally equivalent. Combined with our
framework, these lead to novel, stable and computationally efficient
algorithms. For instance, our general implementation is competitive with
state-of-the-art methods for solving intensively studied problems such as the
LASSO. Further, numerical experiments show that one can solve the Dantzig
selector problem, for which no efficient large-scale solvers exist, in a few
hundred iterations. Finally, the paper is accompanied with a software release.
This software is not a single, monolithic solver; rather, it is a suite of
programs and routines designed to serve as building blocks for constructing
complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This
version has updated reference
- …