

Daniel Dadush, László A. Végh, and Giacomo Zambelli

Rescaled coordinate descent methods for
linear programming

Book section

Original citation:
Originally published in Dadush, Daniel and Végh, László A. and Zambelli,
Giacomo (2016) Rescaled coordinate descent methods for linear programming. In: Louveaux,
Quentin and Skutella, Martin, (eds.) Integer Programming and Combinatorial Optimization.
Lecture Notes in Computer Science, 9682. Springer, Cham, Switzerland, pp. 26-37. ISBN
9783319334608

© 2016 Springer International Publishing Switzerland

This version available at: http://eprints.lse.ac.uk/84479/

Available in LSE Research Online: October 2017

LSE has developed LSE Research Online so that users may access research output of the School.
Copyright © and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE
Research Online to facilitate their private study or for non-commercial research. You may not
engage in further distribution of the material or use it for any profit-making activities or any
commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research
Online website.

This document is the author’s submitted version of the book section. There may be differences
between this version and the published version. You are advised to consult the publisher’s version
if you wish to cite from it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/96716749?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=l.vegh@lse.ac.uk
http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=g.zambelli@lse.ac.uk
http://www.springer.com/
http://eprints.lse.ac.uk/84479/

Rescaled coordinate descent methods for Linear

Programming

Daniel Dadush, László A. Végh, and Giacomo Zambelli

Centrum Wiskunde & Informatica, dadush@cwi.nl,
London School of Economics, {l.vegh,g.zambelli}@lse.ac.uk,

Abstract. We propose two simple polynomial-time algorithms to find a
positive solution to Ax = 0. Both algorithms iterate between coordinate
descent steps similar to von Neumann’s algorithm, and rescaling steps. In
both cases, either the updating step leads to a substantial decrease in the
norm, or we can infer that the condition measure is small and rescale in
order to improve the geometry. We also show how the algorithms can be
extended to find a solution of maximum support for the system Ax = 0,
x ≥ 0.

1 Introduction

Let A = [a1, . . . , an] be an integral m × n matrix with rank m, and
let L denote the encoding size of A. We propose two simple polynomial
algorithms for the linear feasibility problem, that is, to find a solution to
systems of the form

Ax = 0
x > 0.

(1)

Our main contributions are: (i) a new simple iterative method for (1)
with guaranteed finite convergence, (ii) a new geometric potential for
these systems together with a rescaling method for improving it.
Additionally, we show that our algorithms can be adapted to solve the
more general problem of finding a solution to Ax = 0, x ≥ 0, having
maximum support ; that is, where the set of positive coordinates of x is
inclusion-wise maximum. To motivate this last problem, we note that
while general LP feasibility (and thus LP optimization) can be reduced
to (1) via standard perturbation methods (see for example [18]), this is
not desirable for numerical stability. On the other hand, any algorithm
for the maximum support problem can be used directly to test feasibility
of a system of the form Ax = b, x ≥ 0. Indeed, given a maximum support
solution (x̄, x̄0) to the homogenous system Ax− bx0 = 0, (x, x0) ≥ 0, if
x̄0 > 0 then the point x̃ = x̄/x̄0 is a solution to the original problem,
otherwise we conclude that Ax = b, x ≥ 0 is infeasible.

The algorithms we propose fit into a line of research developed over the
past 10 years [3,8,4,6,5,15,2,20,16], where simple iterative updates, such
as variants of perceptron [17] or of the relaxation method [1,11], are
combined with some form of rescaling in order to get polynomial time
algorithms for linear programming.

2 Daniel Dadush, László A. Végh, and Giacomo Zambelli

While these methods are slower than current interior point methods,
they nevertheless yield important insights into the structure of linear
programs. In particular, rescaling methods provide geometric potentials
associated with a linear system which quantify how “well-conditioned”
the system is, together with rescaling procedures for improving these
potentials. Importantly, these potentials often provide more fine grained
measures of the complexity of solving the linear system than the encoding
length of the data, and help identify interesting subclasses of LPs that
can be solved in strongly polynomial time (see for example [5]). We note
that it is an open problem to devise any polynomial method for solving
the maximum support problem that does not depend directly on the bit
complexity L, but only on purely geometric parameters.

Preliminaries. Throughout the paper, we denote L := {x ∈ Rn : Ax =
0}, L+ := L ∩ Rn

+, L> := L ∩ Rn
>. We will also let L⊥ denote the

orthogonal complement of L; clearly, L⊥ = {z ∈ Rn : ∃y ∈ Rm, z =
ATy}. Let L⊥

+ := L⊥ ∩ Rn
+ and L⊥

> := L⊥ ∩ Rn
>. Therefore (1) is the

problem of finding a point in L>. By strong duality, (1) is feasible if and
only if L⊥

+ = {0}, that is,
ATy ≥ 0, (2)

has no solution other than y = 0.
Denote by supp(L+) ⊆ [n] the maximum support of a point in L+.
Obviously supp(L+)∩supp(L⊥

+) = ∅, whereas the strong duality theorem
implies that supp(L+) ∪ supp(L⊥

+) = [n].
For any vector v ∈ Rm we denote by v̂ the normal vector in the direction
of v, that is v̂ := v/‖v‖. We let Â := [â1, . . . , ân]. Note that, given
v, w ∈ Rm, v̂Tŵ is the cosine of the angle between them. Let B(c, r)
denote the m-dimensional Euclidean ball with center c ∈ Rm and radius
r ∈ R+. Let ej denote the jth unit vector an e denote the all-ones vector
of appropriate dimension (depending on the context).

Coordinate descent algorithms. Various coordinate descent methods
are known for finding non-zero points in L+ or L⊥

+. Most algorithms
address either the supp(L+) = [n] or the supp(L⊥

+) = [n] case; here we
outline the common update steps.
At every iteration, maintain a non-negative, non-zero vector x ∈ Rn, and
let y = Ax. If y = 0, then x is a non-zero point in L+. If A

Ty > 0, then
ATy ∈ L⊥

>. Otherwise, choose an index k ∈ [n] such that aT

ky ≤ 0, and
update x and y as follows:

y′ := αy + βâk; x′ := αx+
β

‖ak‖
ek, (3)

where α, β > 0 depend on the specific algorithm. Below we discuss var-
ious possible update choices. These can be seen as coordinate descent
methods for minimizing ‖y‖2 subject to y = Ax,x ≥ 0, and some further
constraint is added, e.g. eTx = 1 in the von Neumann algorithm.
An important quantity in the convergence analysis of the algorithms we
will describe is the condition measure introduced by Goffin [10]:

ρA := max
‖y‖=1,y∈Rm

min
j∈[n]

âT

j y (4)

Rescaled coordinate descent methods for Linear Programming 3

Geometrically, |ρA| is the distance of the origin from the boundary of
conv(Â), where ρA > 0 if and only if supp(L⊥

+) = [n] (in which case
the origin is outside conv(Â)), ρA < 0 if and only if supp(L+) = [n] (in
which case the origin is in the interior conv(Â)), and ρA = 0 otherwise.
In particular, if ρA < 0, then −ρA is the radius of the largest ball in Rn

inscribed in conv(Â) and centered at the origin. If ρA > 0, then ρA is
the width of the dual cone {y ∈ Rm : ATy > 0}, that is, the radius of
the largest ball in Rm inscribed in the dual cone and centered at a point
at distance one from the origin.

von Neumann’s algorithm maintains at every iteration the condition that
y is a convex combination of â1, . . . , ân. The parameters α, β > 0 are
chosen so that α + β = 1 and ‖y′‖ is smallest possible. That is, y′ is
the point of minimum norm on the line segment joining y and âk. If
we denote by yt the vector at iteration t, a simple argument shows that
‖yt‖ ≤ 1/

√
t (see Dantzig [7]). If 0 is contained in the interior of the

convex hull, that is ρA < 0, Epelman and Freund [9] showed that ‖yt‖
decreases by a factor of

√
1− ρ2A in every iteration. Though the norm of y

converges exponentially to 0, we note that this method may not actually
terminate in finite time. If 0 is outside the convex hull however, that is,
ρA > 0, then the algorithm terminates after at most 1/ρ2A iterations.

Betke [3] gave a polynomial time algorithm, based on a combinatorial
variant of von Neumann’s update, for the case supp(L⊥

+) = [n]. Chubanov
uses von Neumann’s update on the columns of the projection matrix to
L, and is able to solve the maximum support problem in time O(n4L).1

Perceptron chooses α = β = 1 at every iteration. If ρA > 0, then, sim-
ilarly to the von Neumann algorithm, the perceptron algorithm termi-
nates with a solution to the system ATy > 0 after at most 1/ρ2A iterations
(see Novikoff [13]). Peña and Soheili gave a smoothed variant of the per-
ceptron update which guarantees termination in time O(

√
log n/ρA) [14],

and showed how this gives rise to a polynomial-time algorithm [15] us-
ing the rescaling introduced by Betke in [3]. The same running time
O(
√
log n/ρA) was achieved by Wei Yu et al. [21] by adapting the Mirror-

Prox algorithm of Nemirovski [12].

Dunagan-Vempala [8] choose α = 1 and β = −(âT

ky). The choice of β
is the one that makes ‖y′‖ the smallest possible when α = 1. It can be
readily computed that

‖y′‖ = ‖y‖
√

1− (âT

k ŷ)
2. (5)

In particular, the norm of y′ decreases at every iteration, and the larger
is the angle between ak and y, the larger the decrease. If ρA < 0, then
|âT

k ŷ| ≥ |ρA|, therefore this guarantees a decrease in the norm of at least√
1− ρ2A.

1 It had been suggested by Prof. Cornelis Roos that Chubanov’s algorithm could be
further improved to O(n3.5L), but the paper was subsequently withdrawn due to a
gap in the argument.

4 Daniel Dadush, László A. Végh, and Giacomo Zambelli

Our Algorithms. Both our algorithms use Dunagan-Vempala updates:
Algorithm 1 on the columns of A, and Algorithm 2 on the orthogonal
projection matrix Π to the space L⊥. These iterations are performed as
long as we obtain a substantial decrease in ‖y‖. Otherwise, a rescaling
is performed in order to improve a geometric potential which serves as
a proxy to the condition measure |ρA|. The rescaling in Algorithm 1 is
the same as in Dunagan-Vempala [8], even though they solve the dual
problem of finding a point in L⊥

>. We will describe the differences after
the description of the algorithm.
Our Algorithm 2 is inspired by the work of Chubanov [6], and it uses
the same rescaling. Our algorithms are in some sense dual to each other
however: Chubanov uses von Neumann updates on the projection matrix
to L⊥ whereas we use Dunagan-Vempala on the projection Π to L.
For the same algorithm, we provide two entirely different analyses, one
similar to Chubanov’s, and another volumetric one, as for Algorithm 1.
Thus, while the rescaling is seemingly very different from the one used
in 1, there is indeed a similar underlying geometry. We compare our
algorithm to Chubanov’s at the end of Section 3.
The running time of our Algorithm 1 is O(m3n+n2m)L, whereas Algo-
rithm 2 runs in O(mn4L) time. Although the second running time bound
is worse, this algorithm can be extended to solve the full support problem
with the same running time estimation. Algorithm 1 can be modified to
solve the maximum support problem as well (see Appendix B), but it
comes at the expense of substantially increasing the running time.

2 Algorithm 1

Algorithm 1, described below, solves (1) (that is, finding a point in L>),
using the Dunagan-Vempala update. It uses the parameters

ε :=
1

11m
, N := 6mL, δ := min

j∈[n]

1

‖(AAT)−1aj‖
. (6)

It follows from (5) that, if in a given iteration there exists k ∈ [n] such
that âT

k ŷ ≤ −ε, then we obtain a substantial decrease in the norm,
namely

‖y′‖ ≤ ‖y‖
√

1− ε2. (7)

On the other hand, if âT

j ŷ ≥ −ε for all j ∈ [n], then it follows that
|ρA| < ε, that is, the condition measure is small. Our aim is to perform
a geometric rescaling that improves the condition measure. As a proxy
for |ρA|, we use the volume of the polytope PA defined by

PA := conv(Â) ∩ (−conv(Â)). (8)

Note that |ρA| is the radius of the largest ball around the origin inscribed
in PA.
If âT

j ŷ ≥ −ε, then PA is contained in a “narrow strip” of width 2ε,
namely PA ⊆ {z ∈ Rm : −ε ≤ ŷTz ≤ ε}. If we replace A with the
matrix A′ := (I + ŷŷT)A, Lemma 2.2 shows that the volume of PA′ is
at least 3/2 times the volume of PA. Geometrically, A′ is obtained by

Rescaled coordinate descent methods for Linear Programming 5

Algorithm 1

Input: A matrix A ∈ Zm×n with rank m.

Output: Either a solution to the system (1) or the statement that (1) is
infeasible.

Set xj := 1 for all j ∈ [n] and y := Ax. Set t := 0.

While ‖y‖ ≥ δ and t ≤ N , do
If ATy ≥ 0, then STOP because (1) is infeasible.;
Else, let k := arg min

j∈[n]
âT

j ŷ;

If âT

k ŷ < −ε, then update

y := y − (âT

ky)âk; x := x− aT

ky

‖ak‖2
ek

Else, rescale:

A :=
(
I + ŷŷT

)
A;

y := 2y;
t := t+ 1;

Endwhile;

If ‖y‖ < δ, output the feasible solution x := x− AT(AAT)−1y;
Else (1) is infeasible.

applying to the columns of A the linear transformation that “stretches”
them by a factor of two in the direction of ŷ.
Thus, at every iteration we either have a substantial decrease in the
length of the current y, or we have a constant factor increase in the
volume of PA. Since the volume of PA is bounded by the volume of the
unit ball in Rm, it follows that the algorithm cannot perform too many
rescalings, unless (1) is infeasible.
After a polynomial number of iterations we either conclude that (1) is
infeasible or we achieve a vector y of norm less than δ. In the latter case,
we show that the orthogonal projection of the current x onto the null-
space of A is a feasible solution to (1). Our main result is the following.

Theorem 2.1. For any input matrix A ∈ Zm×n, Algorithm 1 returns a
feasible solution x for (1) if and only if (1) is feasible. The total num-
ber of iterations of the while cycle is O(m3L), and the total number of
arithmetic operations performed is O

(
(m3n+mn2)L

)
.

Relation to previous work. Even though our update step and rescaling
are the same as the one used by Dunagan and Vempala [8], the algo-
rithm and analysis are substantially different. In fact [8] assumes that
supp(L⊥

+) = [n], and shows that the dual cone width ρA increases with a
high probability. Their algorithm makes use of both perceptron as well
as the Dunagan-Vempala coordinate descent steps. The latter is always
restarted from a random point y in the unit sphere (so in their algorithm

6 Daniel Dadush, László A. Végh, and Giacomo Zambelli

y is not a conic combination of the ai’s). Our algorithm uses the coor-
dinate descent method in a more natural and direct way for the primal
full dimensional case supp(L+) = [n].
An earlier volumetric rescaling was introduced by Betke [3]. In his rescal-
ing, given any y = Ax, ‖y‖ ≤ 1/(

√
mn), x a convex combination, Betke

shrinks each column of A in the direction of the ai that has the largest
coefficient xi, i.e. aj ← aj−1/2(âT

i aj)âi. This has the effect of increasing
the volume of the intersection of the cone ATz > 0 with the unit Eu-
clidean ball, which can be interpreted as a smooth proxy for ρA. Here,
one can view our potential as the natural primal counterpart to Betke’s.

2.1 Analysis

The crucial part of the analysis is to bound the volume increase of PA

at every rescaling iteration; the proof is deferred to Appendix A.

Lemma 2.2. Assume (1) is feasible. For some 0 < ε < 1/(11m), let
v ∈ Rm, ‖v‖ = 1, such that âT

j v ≥ −ε ∀j ∈ [n]. Let A′ = (I + vvT)A.
Then vol(PA′) ≥ 3

2
vol(PA).

To analyse the running time of Algorithm 1 we need to estimate some
of the parameters in terms of the encoding size of A. The proofs are also
deferred to Appendix A.

Proposition 2.3. δ ≥ 2−3L.

Proposition 2.4. If conv(A) contains the origin in its interior, then
conv(A) ⊇ B(0, 2−2L) and |ρA| ≥ 2−3L.

Proof of Theorem 2.1 Correctness. If the algorithm terminates be-
cause it found a y 6= 0 such that ATy ≥ 0, then (1) is indeed infeasible
(note that y 6= 0 because ‖y‖ > δ). Assume the algorithm terminates
because it performed N rescalings, and suppose by contradiction that
(1) is feasible. Then conv(A) would contain the origin in the interior, so
by Proposition 2.4 at the beginning PA would contain a ball of radius at
least 2−3L. In particular, at the beginning vol(PA) ≥ Vm2−3mL, where
Vm denotes the volume of the unit m-ball. By Lemma 2.2, after N itera-
tions vol(PA) ≥ (3/2)N2−3mLVm > Vm, which is impossible since PA is
contained in the unit m-ball.
Assume then that the algorithm terminates with vectors x̄, ȳ such that
‖ȳ‖ ≤ δ. Observe that at every iteration we maintain the invariant y =
Ax and xj ≥ 1 for all j ∈ [n]. Now, consider A to be the initial matrix
and let Ā be the current matrix in the last iteration of the algorithm, so
that ȳ = Āx̄. Let x′ be the solution returned by the algorithm, that is
x′ = x̄ − ĀT(ĀĀT)−1ȳ. One can readily verify that Āx′ = Āx̄ − ȳ = 0
(indeed, x′ is the orthogonal projection of x̄ onto the subspace {x : Āx =
0}).
We need to check that Ax′ = 0 and x′ > 0. Note that Ā is obtained by
a sequence of rescalings of A, therefore it is of the form Ā = TA, where

Rescaled coordinate descent methods for Linear Programming 7

T = (I+vkv
T

k) · · · (I+v1v
T

1) for some sequence of vectors v1, . . . , vk ∈ Rm

with norm 1, therefore Ax′ = T−1Āx′ = 0. We need to prove x′ > 0.
Define z := Ax̄. In particular, z = T−1ȳ. Note that, for any vector
v ∈ Rm of norm 1, (I + vvT)−1 = I − 1

2
vvT, therefore T−1 = (I −

1
2
v1v

T

1) · · · (I − 1
2
vkv

T

k).
Observe that, for any vector y ∈ Rm and any vector v ∈ Rm with unit
norm, ‖(I− 1

2
vvT)y‖2 = ‖y‖2− 3

4
(vTy)2 ≤ ‖y‖2. This implies that ‖z‖ ≤

‖ȳ‖ < δ. Now x′ = x̄ − ĀT(ĀĀT)−1ȳ = x̄ − AT(AAT)−1T−1ȳ = x̄ −
AT(AAT)−1z > 0 where the last inequality follows from the fact that
x̄j ≥ 1, j ∈ [n], and by |aT

j (AAT)−1z| ≤ ‖(AAT)−1aj‖‖z‖ < 1
δ
δ = 1 for

all j ∈ [n].
Termination. By (7), ‖y‖2 decreases by a factor of (1−ε2) every time we
perform an update. Every time we perform a rescaling, ‖y‖2 increases
by a factor of 4. Initially, y = Ae, thus at the beginning ‖y‖2 ≤ 24L.
It follows that the number κ of updates performed by the algorithm

satisfies δ2 ≤ ‖Ae‖24N (1 − ε2)κ ≤ 24L+2N e−kε2 . Since δ ≥ 2−2L by
Proposition 2.3, it follows that κ ≤ ε−2(8L+ 2N) = 121m2(8 + 12m)L.
Therefore the total number of iterations is at most N + κ = O(m3L).
Finally observe that, whenever we perform an update the computa-
tion of ATy can be performed in O(n) arithmetic operations, provided
that we pre-compute the matrix ATA every time we perform a rescal-
ing. The number of rescalings is O(mL), computing (I + ŷŷT)A re-
quires O(nm) operations, while computing AT(I + ŷŷT)(I + ŷŷT)A re-
quires O(n2) arithmetic operations, provided that we had previously
computed ATA. Therefore the total number of arithmetic operations is
O((m3n+mn2)L).

3 Algorithm 2: A dual Chubanov algorithm

Let Π = AT(AAT)−1A denote the orthogonal projection matrix to L⊥

(i.e., the space spanned by the rows of A), and let π1, . . . , πn denote the
columns of Π and πij (i, j ∈ [n]) denote the (i, j) entry of Π . We recall
the following well known properties of the projection matrix Π .

Proposition 3.1. Let A ∈ Rm×n and let Π = AT(AAT)−1A. The fol-
lowing hold (i) For all x, z ∈ Rn, Πx = 0 if and only if x ∈ L, and
Πz = z if and only if z ∈ L⊥; (ii) Π2 = Π; (iii) For every w ∈ Rn,
‖Πw‖ ≤ ‖w‖; (iv) For all j ∈ [n], πj = Πej , thus ‖πj‖ ≤ 1; (v)
πjj = ‖πj‖2 for all j ∈ [n]; (vi) trace(Π) =

∑n
j=1 ‖πj‖2 = m.

In Algorithm 2 below, we set ε := 1

16n
√

3m
. Throughout this section, for

every I ⊆ [n] we denote by DI the diagonal matrix with djj = 1/2 if
j ∈ I , djj = 1 if j 6∈ I . Thus DI = I − (1/2)

∑
j∈I eje

T

j .

Note that, since zj = πT

j z for all j ∈ [n], the update step is just the
Dunagan-Vempala update applied to the matrix Π instead of on A.
Thus, at each update the norm of the current z decreases by at least
a multiplicative factor

√
1− ε2.

Observe also that at every iteration wj ≥ 1 for all j ∈ [n], so in particular
‖z‖ < 1 immediately implies w − z > 0, thus the algorithm terminates
with the solution x := w − z if ‖z‖ ≤ 1.

8 Daniel Dadush, László A. Végh, and Giacomo Zambelli

Algorithm 2

Input: A matrix A ∈ Zm×n with rank m.

Output: Either a solution x ∈ L>, or a set R ⊆ [n] disjoint from the support of L+.

Compute Π = AT(AAT)−1A.
Set wj := 1 for all j ∈ [n], z := Πw, countj := 0 for all j ∈ [n].
While countj < L for all j ∈ [n] do

If w − z > 0, output x := w − z and STOP;
If z ≥ 0, return R := {j ∈ [n] : zj 6= 0} and STOP;

Else, let i := arg min
j∈[n]

zj
‖z‖‖πj‖

;

If
zi

‖z‖‖πi‖
< −ε, then update

z := z − ziπi

‖πi‖2
; w := w − ziei

‖πi‖2
;

else, rescale

let I := {j ∈ [n] :
zj
‖z‖ >

1√
3n
};

A := ADI ;
Recompute Π = AT(AAT)−1A;
Set wj := 1 for all j ∈ [n], z := Πw;
countj := countj + 1 for all j ∈ I ;

Endwhile;

Output R := {j : countj = L}.

We give a proof of correctness of the algorithm. Afterwards, we provide a
different analysis, reminiscent of Lemma 2.2, which relates the rescaling
step to the change of a certain geometric quantity related the condition
measure of Π .

3.1 Correctness of the algorithm

For any a ∈ R, we let a+ := max{0, a} and a− = (−a)+. The correctness
of the algorithm is based on the following simple bound due to Roos [16]]

Lemma 3.2 (Roos 2014). Let z ∈ L⊥ and let k ∈ [n] such that zk > 0.
Then, for every x ∈ L ∩ [0, 1]n.

xk ≤
∑n

j=1 z
−
j

zk
. (9)

Proof. For any x ∈ L, zTx = 0, therefore xk =
∑

j∈[n]\{k} −zjxj

zk
. The

statement follows from the fact that, for every x ∈ [0, 1]n,
∑

j∈[n]\{k}−zjxj ≤∑n
j=1 z

−
j . ⊓⊔

Lemma 3.3. Let A be the current matrix at a given iteration of Algo-
rithm 2. Suppose that the current z = Πw satisfies zj ≥ −ε‖z‖‖πj‖.
Then the set I = {j ∈ [n] :

zj
‖z‖ > 1√

3n
} is nonempty. Furthermore,

every x ∈ L ∩ [0, 1]n satisfies xk ≤ 1
2
for all k ∈ I.

Rescaled coordinate descent methods for Linear Programming 9

Proof. Note first that

n∑

j=1

(
z+j
‖z‖

)2

= 1−
n∑

j=1

(
z−j
‖z‖

)2

≥ 1− ε2
n∑

j=1

‖πj‖2 = 1−mε2 >
1

3
,

which implies that there exists k ∈ [n] such that zk
‖z‖ > 1√

3n
. Given k ∈ I ,

Lemma 3.2 implies that, for every x ∈ L ∩ [0, 1]m,

xk ≤
∑n

j=1 z
−
j

zk
≤ ε
‖z‖
zk

n∑

j=1

‖πj‖ ≤ ε
√
3n
√
n(

n∑

j=1

‖πj‖2)1/2 = εn
√
3
√
m <

1

2
.

⊓⊔

Observe that rescaling has the effect of replacing the null space L of A
with D−1

I L, that is, multiplying by 2 the components indexed by I of all
vectors in L. Let L0 be the null space of the input matrix A (i.e. before
any rescaling). Lemmas 3.2 and 3.3 show that, at any iteration of the
algorithm, L0∩ [0, 1] ⊆ {x ∈ Rn : xj < 2−countj}. It is well know (see for
example Schrijver [18]) that, if j ∈ [n] is in the support Ax = 0, x ≥ 0,
then there exists a solution with xj ≥ 2−L. This shows that, whenever
countj = L for some j ∈ [n], j cannot be in the support.

Running time At the beginning of the algorithm and after each rescal-
ing, z = Πe, therefore ‖z‖ ≤ ‖e‖ =

√
n. Every Dunagan-Vempala up-

date decreases ‖z‖2 by a factor 1 − ε2, and the algorithm terminates
with x := w − z > 0 when ‖z‖ < 1. This shows that the number κ
of updates between any two rescalings satisfies n(1 − ε2)κ ≥ 1, there-
fore κ ≤ ln(n)ε−2 = O(n2m log(n)). Since the algorithm performs at
most L rescaling for every variable, it follows that the algorithm per-
forms at most O(n3m log(n)L) updates. Each update requires O(n) op-
erations, therefore the running-time of the algorithm is O(n4m log(n)L).
(It should be noted here that the recomputation of the matrix Π at every
rescaling can be performed in O(|I |n2) arithmetic operations using the
Sherman-Morrison formula [19], therefore the total number of arithmetic
operations performed during the rescalings is O(n3L)).

Finally, the log(n) factor appearing in the running time can be elim-
inated by slightly modifying the algorithm, choosing the next w after
each rescaling more carefully, as shown by the following lemma (proved
in Appendix A).

Lemma 3.4. Let A ∈ Rm×n, Π = AT(AAT)−1A. Given I ⊆ [n], let
Π ′ = DIA

T(AD2
IA

T)−1ADI . Given z = πw for some w ∈ Rn, if we let
w′ = D−1

I w and z′ = Π ′w′, then ‖z′‖ ≤ 2|I|‖z‖.

By the above lemma, we can ensure that, throughout the entire execution
of the algorithm, rescaling increases the norm of z by a factor of at most
2nL. This implies that the total number κ of updates performed by the
algorithm must satisfy n(1 − ε2)κ4nL ≥ 1, which implies κ ≤ (lnn +
nL ln 4)ε−2 = O(n3mL). It follows that the running time is O(n4mL).

10 Daniel Dadush, László A. Végh, and Giacomo Zambelli

The maximum support problem Algorithm 2 can be used to identify
the support of Ax = 0, x ≥ 0: whenever the algorithm returns a set
R of indices not in the support, we set xj := 0 for all j ∈ R, remove
the columns of A indexed by R, and repeat. If the algorithm terminates
with a feasible solution x > 0 for the current system, this defines a
maximal support solution for the original problem. In the worst case, we
need to run Algorithm 2 n times, giving a näıve running time estimate
of O(n5mL). However, observe that whenever Algorithm 2 terminates
with a set R of indices, at the subsequent call to the algorithm we can
initialize countj , j 6∈ R, to the values computed at the end of the last call.
Therefore, the total number of arithmetic operations needed to compute
a maximum support solution is O(n4mL), the same as the worst-case
running time of Algorithm 2.

3.2 Analysis based on a geometric potential

Let QΠ := conv(Π)∩ conv(−Π). Throughout this section, we denote by

v̂ol(·) the volume with respect to the measure induced on L⊥. We will

consider as a potential v̂ol(QΠ).

Lemma 3.5. Let ε′ = 1/(16
√
3nm). Let z ∈ L⊥ such that zj ≥ −ε′‖z‖‖πj‖

for all j ∈ [n]. Let I = {j ∈ [n] :
zj
‖z‖ > 1√

3n
}, and Π ′ = DIA

T(AD2
IA

T)−1ADI .
Then

v̂ol(QΠ′) ≥ e1/8 v̂ol(QΠ).

The proof is given in Appendix A.
Since ε ≤ ε′ because m ≤ n, it follows that when Algorithm 2 per-
forms a rescaling, the current point z = Πw satisfies the hypothesis of
Lemma 3.5, thus after rescaling, v̂ol(QΠ) increases by a constant factor.

Let us recall that QΠ ⊆ B(0, 1) ∩ L, therefore v̂ol(QΠ) ≤ V0, where V0

is the volume of the m-dimensional unit ball in Rm. We also have

Proposition 3.6. Let A ∈ Zm×n, let L denote the encoding size of A,
and let Π = AT(AAT)−1A. If L> 6= ∅, then v̂ol(QΠ) ≥ 2−3mL.

The proof of Proposition 3.6 is postponed to Appendix A. It follows that,
if Ax = 0, x > 0 has a solution, then the algorithm cannot perform more
than (24 ln 2)mL rescalings. In particular, in O(mL) rescalings one can
either find a solution to Ax = 0, x > 0, or argue that none exists. Since
m ≤ n, this means that typically we may be able to prove that Ax = 0,
x > 0 has no solution before we are actually able to identify any index j
not in the support.

Refinements Note that the two analyses we provided are somewhat
“loose”, in the sense that the parameters in Algorithm 2 have been chosen
to ensure that both analyses hold. Here we propose a few refinements
and variants.

(a) To optimize the algorithm based on the potential v̂ol(QΠ), it is
clear from Proposition 3.6 that we can use ε′ = 1/(8

√
nm) instead of

ε = 1/(8
√
mn). As we have seen, the maximum number of rescaling that

Rescaled coordinate descent methods for Linear Programming 11

the algorithm can do if Ax = 0, x > 0 is feasible is O(24 ln(2)mL). This
guarantees that the numbers κ of updates satisfies n(1−ε′2)κ424 ln(2)mL ≥
1, therefore κ = O(n2m2L). This gives a total running time of O(n2m3L).

(b) The analysis of the algorithm based on the argument in Section 3.1
can be simplified if we set ε̄ = 1/(2

√
mn), and do an update when the

condition zi ≤ −ε̄‖πi‖ is satisfied by some i ∈ [n] (rather then when
zi ≤ −ε‖z‖‖πi‖). This implies that the norm of z′ := z − (zi/‖πi‖2)πi

satisfies ‖z′‖2 ≤ ‖z‖2(1− (ε̄/‖z‖)2) = ‖z‖2 − 1/(4mn). Since after each
rescaling ‖z‖ ≤ √n, this ensures that between every two rescalings there
are at most 4mn2 updates (without the need of resorting to Lemma 3.4).
When zj ≥ −ε̄‖πj‖ for every j ∈ [n], it follows that there must be at least
one k ∈ [n] such that the bound in (9) is at most 1/2. Indeed, for any k
such that zk ≥ 1 (one such k must exist because w − z 6> 0 and wj ≥ 1
for all j ∈ [n]) we have (

∑n
j=1 z

−
j)/zk ≤ ε

∑n
j=1 ‖πj‖ ≤ ε

√
nm = 1/2.

(c) A variant of the algorithm that gives the same running time but
could potentially be more efficient in practice is the following. Define
ε̃ = 1/(2

√
n). At each iteration, let N(z) := {j : zj < 0}, and compute

q :=
∑

j∈N(z) πj . Note that ‖q‖ ≤
√
|N(z)|, since q is the projection

onto L⊥ of the incidence vector of N(z).

Instead of checking if there exists i ∈ [n] such that zi ≤ −ε‖z‖‖πi‖,
check if qTz ≤ −ε̃‖q‖. If such an index exists, then update as follows

z′ := z − q
qTz

‖q‖2 ; w′ := w − qTz

‖q‖2
∑

j∈N(z)

ej .

It follows that ‖z′‖2 ≤ ‖z‖2 − 1/(4n), hence the maximum number of
updates between rescalings is 4n2. If instead qTz > −ε̃‖q‖, then for every
k ∈ [n] such that zk ≥ 1, we have (

∑n
j=1 z

−
j)/zk = (−qTz)/zk ≤ ε̃‖q‖ ≤

ε̃
√
n = 1/2.

Note that the total number of updates performed by the algorithm is
O(n3L), which is better than O(mn3L) updates performed by Algo-
rithm 2. However, the number of arithmetic operations needed to com-
pute q is, in the worst case, O(n2), therefore the total number of arith-
metic operations is still O(n5L). Nevertheless, this variant may be better
in practice because it provides faster convergence.

Comparison with Chubanov’s algorithm Chubanov’s algorithm works
on the projection matrix Π̄ = [π̄1, . . . , π̄n] to the null space L of A,
that is, Π̄ = I − Π . At every iteration, Chubanov maintains a vector
v ∈ Rn

+ such that e
Tv = 1, starting from y = π̄j for some j ∈ [n], and

computes y = Π̄v. If y > 0, then Chubanov’s algorithm terminates with
y ∈ L>, else it selects an index i ∈ [n] with yi ≤ 0 and performs a
von Neumann step y′ = λy + (1 − λ)π̄i. By Dantzig’s analysis of von
Neumann’s algorithm [7], ‖y′‖−2 ≥ ‖y‖−2 + 1, hence after at most 4n3

operations ‖y‖ ≤ 1/(2n
√
n). Now, if k = argmaxj∈[n] vj , then vk ≥ 1/n,

therefore we have that for every x ∈ L+ ∩ [0, 1]n, xk ≤ (vTx)/vk =
(yTx)/vk ≤ (‖x‖‖y‖)/vk ≤

√
n‖y‖/vk ≤ 1/2. Thus, after at most O(n3)

steps, Chubanov’s algorithm performs the same rescaling as Algorithm 2
using I := {j ∈ [n] : ‖y‖/vk ≤ 1/(2

√
n)}.

12 Daniel Dadush, László A. Végh, and Giacomo Zambelli

Note that, while the rescaling used by Algorithm 2 and Chubanov’s al-
gorithm are the same, and both algorithm ultimately produce a point
in L> if one exists, the updating steps work in the opposite direction.
Indeed, both algorithms maintain a nonnegative vector in Rn, but every
von Neumann step in Chubanov’s algorithm decreases the norm of the
orthogonal projection of the nonnegative vector onto L, whereas every
Dunagan-Vempala update of Algorithm 2 decreases the norm of the or-
thogonal projection z onto L⊥. Also, Chubanov’s iterations guarantee a
fixed increase in ‖y‖−2, and rescaling occurs when ‖y‖ is small enough,
whereas Algorithm 2 terminates when ‖z‖ is small enough (that is, when
‖z‖ ≤ 1), and rescaling occurs when the updating step would not produce
a sufficient decrease in ‖z‖.
We note that Chubanov’s algorithm solves the maximum support prob-
lem in O(n4L), and hence is faster than ours. His speedup is based on
an amortized analysis that we do not currently know how to reproduce
with Dunagan-Vempala updates, though we imagine that this should be
possible.

References

1. S. Agmon, The relaxation method for linear inequalities, Canadian
Journal of Mathematics 6 (1954) 382-392.

2. A. Basu, J. De Loera, M. Junod, On Chubanov’s method for Linear
Programming, (2012) to appear on INFORMS Journal on Comput-
ing. arXiv:1204.2031v1

3. U. Betke, Relaxation, new combinatorial and polynomial algorithms
for the linear feasibility problem, Discrete & Computational Geom-
etry 32 (2004) 317-338.

4. S. Chubanov, A strongly polynomial algorithm for linear systems
having a binary solution, Mathematical Programmming 134 (2012),
533-570.

5. S. Chubanov, A polynomial algorithm for linear optimization which
is strongly polynomial under certain conditions on optimal solutions,
http://www.optimization-online.org/DB_FILE/2014/12/4710.pdf

(2015).
6. S. Chubanov, A polynomial projection algorithm for linear program-

ming, Mathematical Programming 153 (2015) 687-713.
7. G. B. Dantzig, An ε-precise feasible solution to a linear program with

a convexity constraint in 1/ε2 iterations independent of problem size,
Report SOL 92-5, Stanford University (1992).

8. J. Dunagan, S. Vempala, A simple polynomial-time rescaling algo-
rithm for solvign linear programs, Mathematical Programming 114
(2006) 101-114.

9. M. Epelman and R. M. Freund. Condition number complexity of an
elementary algorithm for computing a reliable solution of a conic
linear system. Mathematical Programming, 88(3) (2000) 451-485.

10. J. Goffin. The relaxation method for solving systems of linear in-
equalities. Math. Oper. Res., 5 (1980) 388-414.

11. T. Motzkin, I.J. Schoenberg, The relaxation method for linear in-
equalities, Canadian Journal of Mathematics 6 (1954) 393-404.

Rescaled coordinate descent methods for Linear Programming 13

12. A. Nemirovski, Prox-method with rate of convergence o(1/t) for vari-
ational inequalities with Lipschitz continuous monotone operators
and smooth convexconcave saddle point problems, SIAM Journal on
Optimization 15 (2004) 229-251.

13. A.B.J Novikoff, On convergence proofs for perceptrons, Proceedings
of the Symposium on the Mathematical Theory of Autoomata XII
(1962) 615-622.

14. N. Soheili and J. Peña, A smooth perceptron algorithm, SIAM Jour-
nal on Optimization 22 (2012) 728-737.

15. J. Peña, N. Soheili, A deterministic rescaled perceptron algorithm,
Mathematical Programming (2015)

16. K. Roos, On Chubanovs Method for Solving a Homogeneous In-
equality System, Numerical Analysis and Optimization 134 (2015)
319-338.

17. F. Rosenblatt, The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organization in the Brain, Cornell Aeronautical
Laboratory, Psychological Review 65 (1958) 386-408

18. A. Schrijver, Theory of Linear and Integer Programming, Wiley, New
York (1986).

19. J. Sherman and W. J. Morrison, Adjustment of an Inverse Matrix
Corresponding to a Change in One Element of a Given Matrix, An-
nals of Mathematical Statistics 21 (1949) 124-127.

20. L.A. Végh, G. Zambelli, A polynomial projection-type algorithm for
linear programming, Operations Research Letters 42 (2014), 91-96.

21. A. Wei Yu, F. Kılınç-Karzan, J. Carbonell, Saddle Points and Accel-
erated Perceptron Algorithms, Proceedings of The 31st International
Conference on Machine Learning – Journal of Machine Learning Re-
search 32 (2014) 1827-1835.

14 Daniel Dadush, László A. Végh, and Giacomo Zambelli

A Proofs of technical lemmas

ŷ
a1

a2

a3
a4

a5

a′
1a′

2

a′
3

a′
4

a′
5

PA PA′ε

Fig. 1. Effect of rescaling. The dashed circle represent the set of points of norm 1. The
shaded areas are PA and PA′ .

The following easy technical claim will be needed in the proof of Lemma 2.2.

Lemma A.1. Let X ∈ R be a random variable supported on the interval
[−ε, η], where 0 ≤ ε ≤ η, satisfying E[X] = µ. Then for c ≥ 0, we have
that

E[
√

1 + cX2] ≤
√

1 + cη(ε+ |µ|)

Proof. Let l(x) = η−x
η+ε

√
1 + cε2 + x+ε

η+ε

√
1 + cη2 denote the unique affine

interpolation of
√
1 + cx2 through the points {−ε, η}. By convexity of√

1 + cx2, we have that l(x) ≥
√
1 + cx2 for all x ∈ [−ε, η]. Hence, we

see that

E[
√

1 + cX2] ≤ E[l(X)] (since X is supported on [−ε, η])
= l(E[X]) = l(µ) (since l is affine) .

From here, we get that

l(µ) =
η − µ

η + ε

√
1 + cε2 +

µ+ ε

η + ε

√
1 + cη2

≤
√

1 + c

(
η − µ

η + ε
ε2 +

µ+ ε

η + ε
η2

) (
by concavity of

√
x
)

=
√

1 + c (ηε+ (η − ε)µ) ≤
√

1 + cη(ε+ |µ|) (since ε ≤ η) ,

as needed. ⊓⊔

Lemma 2.2. Assume (1) is feasible. For some 0 < ε < 1/(11m), let
v ∈ Rm, ‖v‖ = 1, such that âT

j v ≥ −ε ∀j ∈ [n]. Let A′ = (I + vvT)A.
Then vol(PA′) ≥ 3

2
vol(PA).

Rescaled coordinate descent methods for Linear Programming 15

Proof. Let T := (I+vvT). We shall prove TPA ⊆ (1+3ε)PA′ . The claim
then follows easily, since vol(TPA) = 2vol(PA) as det(T) = 2. Thus we
obtain vol(P ′

A) ≥ 2vol(PA)/(1 + 3ε)m ≥ 3
2
vol(PA), since ln(1 + 3ε)m ≤

ln(1 + 3/(11m))m ≤ 3
11
≤ ln 4

3
.

To show TPA ⊆ (1 + 3ε)PA′ , let us consider an arbitrary point z ∈ PA.
By symmetry, it suffices to show Tz ∈ (1 + 3ε)conv(Â′). By definition,
there exists λ ∈ Rn

+ such that
∑n

j=1 λj = 1 and z =
∑n

j=1 λj âj . Note
that

Tz =

n∑

j=1

λjT âj =

n∑

j=1

(λj‖T âj‖)â′
j =

n∑

j=1

λj

√
1 + 3(vTâj)2 â

′
j . (10)

Thus, since 0 ∈ conv(Â′), it suffices to show that
∑n

j=1 λj

√
1 + 3(vTâj)2 ≤

1 + 3ε.
The above is of the form E[

√
1 + 3X2] where X is a random variable

supported on [−ε, 1] and |E[X]| = |∑n
j=1 λjv

Tâj | = |vTz|. Note that

|vTz| ≤ ε because both z and −z are in PA. Hence, by Lemma A.1,∑n
j=1 λj

√
1 + 3(vTâj)2 ≤

√
1 + 3(2ε) ≤ 1 + 3ε. ⊓⊔

For the proofs of the next two propositions (Propositions 2.3 and 2.4),
we recall that, for every square submatrix B of A, |det(B)| ≤ 2L.

Proposition 2.3. δ ≥ 2−3L.

Proof. Given a matrix B and subsets P,Q of the row and column indices,
respectively, we denote by BP,Q the submatrix of B defined by the rows
indexed by P and by the columns indexed by Q. Let M := AAT. By
the Cauchy-Binet formula, for every 1 ≤ k ≤ m and every choice of
P,Q ⊆ [m] such that |P | = |Q| = k

det(MP,Q)
2 =

∑

U⊆[m]

|U|=k

det(AP,U) det(AQ,U) ≤
(
n

k

)
22L ≤ 23L, (11)

since
(
n
k

)
≤ nk and L ≥ m log n.

It follows that the absolute value of each entry of adj(M), the adju-

gate matrix of M , is at most 2
3
2
L, therefore the absolute value of each

entry of the matrix adj(M)aj is at most m2
5
2
L, j ∈ [n]. In particular,

‖adj(M)aj‖2 ≤ m325L ≤ 26L. Thus δ ≥ detM
23L

≥ 2−3L. ⊓⊔

Proposition 2.4. If conv(A) contains the origin in its interior, then
conv(A) ⊇ B(0, 2−2L) and |ρA| ≥ 2−3L.

Proof. To prove the first part of the statement, let p be the point of
minimum norm on the boundary of conv(A). Since p is contained in some
facet of conv(Â), there exist a nonsingular m×m submatrix B of A such
that p is the orthogonal projection of the origin onto the hyperplane
H := {y ∈ Rm : ∃x s.t. y = Bx, eTx = 1}. If we let γ = (B−1)Te, then
H = {y ∈ Rm : γTy = 1}, thus p = −γ/‖γ‖2, so ‖p‖ = ‖γ‖−1. Since the
absolute value of each entry of adj(B) is at most 2L, the absolute value

16 Daniel Dadush, László A. Végh, and Giacomo Zambelli

of each entry of γ is at most m2L

det(B)
. Thus ‖γ‖ ≤ m3/22L

det(B)
≤ 22L, where

the last inequality follows from the fact that 2L ≥ L ≥ mn ≥ m3/2 and
that det(B) ≥ 1 since A is an integral matrix.
For the second part, let α = minj∈[n] ‖aj‖. Then conv(Â) ⊆ α−1conv(A),
thus |ρA| ≥ α−1‖p‖. Note that α ≤ 2L. This shows that |ρA| ≥ (α‖γ‖)−1 ≥
2−3L. ⊓⊔
Lemma 3.4. Let A ∈ Rm×n, Π = AT(AAT)−1A. Given I ⊆ [n], let
Π ′ = DIA

T(AD2
IA

T)−1ADI . Given z = πw for some w ∈ Rn, if we let
w′ = D−1

I w and z′ = Π ′w′, then ‖z′‖ ≤ 2|I|‖z‖.
Proof. We only need to prove the lemma for the case where |I | = 1, say
I = {k}. In particular, AD2

IA
T = AAT − (3/4)aka

T

k . By the Sherman-

Morrison formula [19])(i.e. (B + uvT)−1 = B−1− B−1uvTB−1

1 + vTB−1u
for every

non-singular square matrix B and vectors u, v),

(AD2
I(A)T)−1 = (AAT)−1 +

(AAT)−1aka
T

k(AAT)−1

4/3 + ‖πk‖2
.

(since aT

k(AAT)−1ak = πkk = ‖πk‖2). It follows that

Π ′ = DI

(
P +

3πkπ
T

k

4− 3‖πk‖2
)
DI ,

therefore

‖z′‖2 = w′TΠ ′w′ = ‖z‖2 + 3z2k
4− 3‖πk‖2

≤ 4‖z‖2,

where the last inequality follows from z2k ≤ ‖z‖2 and ‖πk‖ ≤ 1. ⊓⊔
Lemma 3.5. Let ε′ = 1/(16

√
3nm). Let z ∈ L⊥ such that zj ≥ −ε′‖z‖‖πj‖

for all j ∈ [n]. Let I = {j ∈ [n] :
zj
‖z‖ > 1√

3n
}, and Π ′ = DIA

T(AD2
IA

T)−1ADI .
Then

v̂ol(QΠ′) ≥ e1/8 v̂ol(QΠ).

Proof. We assume v̂ol(QΠ) > 0, otherwise the statement is trivial. Ob-
serve that, if we define H = AT(AAT)−1 and QA = conv(A)∩conv(−A),
then QΠ = HQA, thus

v̂ol(QΠ) = vol(QA)det(H
TH)

1/2
= vol(QA)det(AAT)

−1/2
. (12)

The statement will follow by proving the next two inequalities.

ln(det(AD2
IA

T)) ≤ ln(det(AAT))− 1

2
; (13)

vol(QA) ≤ (1 + 1/(8m))m vol(QADI). (14)

We prove (13). Note that D2
I = I−3/4∑i∈I eie

T

i , thus AD2
IA

T = AAT−
3/4

∑
i∈I aia

T

i . Recalling that the Jacobian of ln det(X) is X−1 and that
ln det(X) is concave, we have that

ln(det(ADI
2AT)) ≤ ln(det(AAT))− (3/4)trace((AAT)−1(

∑

i∈I

aia
T

i))

= ln(det(AAT))− (3/4)
∑

i∈I

‖πi‖2.

Rescaled coordinate descent methods for Linear Programming 17

Hence, to prove (13) it suffices to show that
∑

i∈I ‖πi‖2 ≥ 2/3. Note that
(zi/‖z‖)2 < 1/(3n) for all i 6∈ I , therefore

∑

i∈I

‖πi‖2 ≥
∑

i∈I

(πT

i zi)
2

‖z‖2 =
∑

i∈I

z2i
‖z‖2 = 1−

∑

i∈[n]\I

z2i
‖z‖2 ≥ 1−n(1/

√
3n)2 =

2

3
,

where the first inequality follows from Cauchy-Schwartz.

We prove (14). Since πiz = zi and ‖πi‖ ≤ 1 for all i ∈ [n], the assumption
implies πT

i ẑ ≥ −ε′ ∀i ∈ [n]. This implies that, for all v ∈ conv(Π),
ẑTv ≥ −ε′.
Consider now y ∈ QA, and let v = Hy. It follows that v ∈ QΠ , thus
−v ∈ conv(Π). The previous argument implies ẑTv ≤ ε′. We may write
y =

∑n
i=1 λiai where λ ≥ 0, eTλ = 1. We then have ε′ ≥ ẑTv = ẑHAv =

ẑTΠλ = ẑTλ. Now note that

y =
∑

i∈[n]

λiai =
∑

i∈I

2λi(ai/2) +
∑

i∈[n]\I
λiai,

hence to prove the statement, since 0 ∈ conv(ADI), it suffices to show
that

∑
i∈I λi ≤ 1/(8m). Assume not, then we see that

ẑTλ =
∑

i∈I

λi
zi
‖z‖ +

∑

i∈[n]\I
λi

zi
‖z‖ >

1

8m

1√
3n
− ε′ = 2ε′ − ε′ = ε′,

a contradiction.
Finally, by equations (12)(13)(14), since

ln v̂ol(QΠ′) = ln
(
vol(PA′)det(AD2AT)

−1/2
)

≥ ln
(
vol(PA)det(AAT)

−1/2
)
+ 1/4−m ln (1 + 1/(8m))

≥ ln v̂ol(QΠ) + 1/8

which implies the statement. ⊓⊔

Proposition 2.4. If conv(A) contains the origin in its interior, then
conv(A) ⊇ B(0, 2−2L) and |ρA| ≥ 2−3L.

Proof. By Proposition 2.4, vol(QA) ≥ 2−2mLV0, while by Proposition (11),

det(AAT)2 ≤ 23L. It follows that v̂ol(QΠ) = vol(QA) det(AAT)−1 ≥
2−2mL2−3/2L ≥ 2−3mL. ⊓⊔

B Finding a maximal support solution with

Algorithm 1

We now turn to the general case of finding the maximum support a
solution to

Ax = 0
x ≥ 0.

(15)

18 Daniel Dadush, László A. Végh, and Giacomo Zambelli

Throughout this section, we denote S := supp(L+). Algorithm 1 ad-
dressed the case S = [n] only. The reason we need this assumption is
that if S 6= [n] then PA is lower dimensional and hence its volume is
0. However, we show that running the same algorithm, with a different
choice of ε and N , can provide further information that enables solving
the maximum support problem. We define the parameters

ε :=
1

12m3/2
, N := 12m2L, K = 23mLeN/4m (16)

and keep the same δ as in (6).
In the remainder, for H ⊆ [n], AH denotes the submatrix of A corre-
sponding to the column set H . Let αj = ‖aj‖ denote the length of the
j’th column of the original matrix. We avoid normalizing the columns to
maintain integrality of the matrix.

Algorithm 3

Input: A matrix A ∈ Zm×n with rank m, and ‖aj‖ = αj .

Output: A maximum support solution to (15).

Set H = [n].
While H 6= ∅, do

Run Algorithm 1 with input matrix AH and parameters ε, N as in (16).

If a solution x is returned, then STOP
Output S = H and the solution x to (15), extended by xi = 0 for

i ∈ [n] \H .

If a vector y 6= 0, AT

Hy ≥ 0 is returned, then
Set H = H \ {i : aT

i y > 0} and repeat.

If ‖y‖ > δ at termination then
Set H = {i ∈ H : ‖ai‖ < Kαi} and repeat.

Endwhile;

Output S = ∅.

The overall algorithm (Algorithm 3) runs Algorithm 1 in the previous
section multiple times, for a subset of columns of the matrix A. We start
with the entire matrix A, and removes columns that turn out not to be
in the set S; the current column set H ⊆ [n] will provably contain the
entire S.
If Algorithm 1 finds a full support solution for H , then we conclude
S = H and return the maximum support solution. If a nonzero vector y
is found with ATy ≥ 0, then we may remove all indices i with aT

i y > 0
from H as they cannot be in S. If the algorithm does not terminate with
either output within N rescalings, then we examine the length of the
vectors after all the rescalings. We remove every i from S whose lengths

Rescaled coordinate descent methods for Linear Programming 19

increased by at least a factor K as compared to the original input. The
correctness of the algorithm is based on the following Theorem.

Theorem B.1. Assume Algorithm 1 does not terminate within N rescal-
ing steps, where the parameters in (16) are used. Then ‖ai‖ > Kαi im-
plies i /∈ S. Further, rk{ai : ‖ai‖ < Kαi} < m.

The theorem implies that S ⊆ H is maintained in every step of the al-
gorithm. Furthermore, the dimension of H reduces by at least one in
every iteration, and hence Algorithm 1 will terminate within m itera-
tions. (Note that the dimension of H also decreases in the case when a
y is found with ATy ≥ 0.)
One can easily modify the argument in the proof of Theorem 2.1 to see
that the number of iterations in Algorithm 1 with the modified values
of ε and N is O(m5L). Hence the overall running time of Algorithm 3 is
O(m6nL+m2n2L).
The intuition behind Theorem B.1 is the following. The polytope PA

might be contained in a subspace X and hence have volume 0. If the
rescaling vector v falls into this subspace or has a large projection to X,
we can argue that the relative volume of PA increases significantly. If v is
almost orthogonal to X, then PA may even decrease; however, only by a
small amount. The length of a vector ai becoming very large during the
N rescalings is equivalent to saying that on average the rescaling vectors
had a large projection to the direction of ai. If i ∈ S, then this means
that the rescaling vector on average had large projection to X and hence
the relative volume of PA must have increased beyond the volume of the
unit ball, a contradiction. Therefore we can conclude i /∈ S.
For the second part, assume there is a full dimensional set of vectors ai

which remained shorter than K. In this case, we use a volume argument
not on PA, but on the full dimensional parallelepiped defined by these
vectors âi. Since the rescaling vector on average had a small projection
on them, one can derive a contradiction by giving a lower bound on the
volume increase over the sequence of rescalings.

B.1 Analyzing the relative volume

For any set D ⊆ Rm, we let span(D) denote the smallest linear subspace
containing D.
Let X = span(PA) denote the subspace containing PA. We will analyze

the relative volume of PA in X, which we denote by v̂ol(PA). We have
already used that if S = [n] then PA is full-dimensional, that is, X = Rm.
The following Lemma extends this observation to the general case.

Lemma B.2. span(PA) = span{ai : i ∈ S}, and PA = PAS .

Proof. Without loss of generality we can assume ‖ai‖ = 1, hence âi = ai.
The first claim is equivalent to showing that for every i ∈ [n], there exists
an α > 0 such that αai ∈ PA if and only if i ∈ S.
Consider first an index i /∈ S. For a contradiction, assume that αai ∈
PA ⊆ conv(−A) for some α > 0. That is, αai = −∑j λjaj for some

20 Daniel Dadush, László A. Végh, and Giacomo Zambelli

coefficients λ ≥ 0. Setting xj = λj if j 6= i and xi = α + λi gives a
solution to (15) with xi > 0, a contradiction to i /∈ S.
Let us now take an index i ∈ S. Let x be a maximum support solution to
(15) with

∑
i xi = 1; in particular, xi > 0. We observe that xiai ∈ PA.

Indeed, xiai ∈ conv(A), and xiai = −
∑

j 6=i xjaj ∈ −conv(A). (Here we
use that i ∈ S implies S 6= ∅ and therefore |S| ≥ 2, and 0 ∈ conv(A)).
For the second claim, consider a vector z ∈ PA. This is equivalent to
the existence of convex combinations λ and µ such that z =

∑
λiai =

−∑µjaj . The claim follows by showing that λi or µi can be positive
only if i ∈ S. This holds since x = λ + µ is a solution to (15), with
S ⊇ supp(x) = supp(λ) ∪ supp(µ). ⊓⊔

The following Lemma naturally extends Lemma 2.2. Let d = |S|; accord-
ing to the previous Lemma, dim(X) = d.

Lemma B.3. Assume S 6= ∅, or equivalently, 0 ∈ conv(A) and let ε >
0. Let v ∈ Rm be such that ‖v‖ = 1 and âT

j v ≥ −ε, for all j ∈ S. Let vX
denote the orthogonal projection of v onto X, and let ε̄ = min{ε, ‖vX‖}.
Let A′ = (I + vvT)A. Then

v̂ol(PA′) ≥ v̂ol(PA)

√
1 + 3‖vX‖2

(1 + 6ε̄‖vX‖)d
.

Proof. The proof follows the same lines as Lemma 2.2. Let T = (I +
vvT)A.

Claim. TPA ⊆
√

1 + 6ε̄‖vX‖PA′ .

Proof. Consider an arbitrary point z ∈ PA. We must show ±Tz ∈√
1 + 6ε̄‖vX‖conv(Â′); by symmetry of PA, we may restrict to proving

this containment for Tz.
Using PA = PAS shown in Lemma B.2, we may write z =

∑
i∈S λiâi for

a convex combination λ. From this, we see that

|vTâi| = |vTX âi| ≤ ‖vX‖‖âi‖ = ‖vX‖ ∀i ∈ S.

Since λ is a convex combination we have that vTz ≥ −min{ε, ‖vX‖} =
−ε̄. Furthermore, by symmetry, we also have that vTz ≤ ε̄. The same
computation as in (10) gives

Tz =
∑

i∈S

λi

√
1 + 3(vTâi)2â

′
i.

Since 0 ∈ conv(Â′), to show that z ∈
√

1 + 6ε̄‖vX‖conv(Â′) it suffices
to show that

∑

i∈S

λi

√
1 + 3(vTâi)2 ≤

√
1 + 3‖vX‖(2ε̄) =

√
1 + 6‖vX‖ε̄. (17)

This is a consequence of Lemma A.1, since the above is of the form
E[
√
1 + 3X2] where X is a random variable supported on [−ε̄, ‖vX‖] and

|E[X]| = |∑i∈S λi(v
Tâi)| = |vTz| ≤ ε̄ (note that z and −z are in PA).

⊓⊔

Rescaled coordinate descent methods for Linear Programming 21

Using this claim, and that PA and PA′ have dimension d, we see that

v̂ol(PA′) ≥ v̂ol

(
TPA√

1 + 6ε̄‖vX‖

)
=

v̂ol(TPA)

(1 + 6ε̄‖vX‖)d/2
.

It remains to show that v̂ol(TPA) = v̂ol(PA)
√

1 + 3‖vX‖2. Let U be
a matrix whose columns define an orthonormal basis of X. From here,
note that vX = UUTv and ‖vX‖ = ‖UTv‖. Now the amount by which
T dilates volume when restricted to X is exactly equal to the volume of
the parallelepiped generated by the columns of TU , which is
√

det((TU)T(TU)) =
√

det(I + 3UTvvTU) =
√

1 + 3‖UTv‖2 =
√

1 + 3‖vX‖2.

⊓⊔

We now analyize the sequence of rescalings during Algorithm 1 with ε
and N as in (16). Let At = [at

1, . . . , a
t
n] be the current matrix A after t

rescalings (so at the beginning A = [a0
1, . . . , a

0
n]), and let yt be the vector

used to determine the tth rescaling, so that at
j = (I + ŷt(ŷt)T)at−1

j for
j ∈ [n]. According to the rescaling condition in the algorithm, for every
t ∈ [N] and j ∈ [n], we have (ât

j)
Tyt ≥ −ε. Let Xt = span(PAt) and let

ηt denote the length of the orthogonal projection of ŷt onto Xt.
If we let wjt := (ŷt)Tât

j , a simple calculation shows that

‖at
j‖ = ‖at−1‖

√
1 + 3w2

jt. (18)

Let r := max{τ : B(0, τ) ∩ X0 ⊆ conv(A0)}. Recall that, if S = [n],
then r = |ρA|, where ρA is the condition measure of the original matrix
A0 defined in (4), and that in this case r ≥ 2−3L by Proposition 2.4. The
proof of Proposition 2.4 can be easily modified to prove that the bound
r ≥ 2−3L holds even in the case ∅ (S ([n]. Recall also that αi = ‖a0

i ‖.

Lemma B.4. Assume S 6= ∅, and for κ ∈ [N], let η̄ =
∑κ

t=1 ηt/κ. Then
the following hold:

(i) If η̄ ≥ 12εd, then v̂ol(PAκ) ≥ v̂ol(PA0)eκη̄
2/4.

(ii) If κ ≥ 4d ln(1/r)

γ2 , then η̄ ≤ max {γ, 12εd}. In particular, for κ = N ,

we have η̄ ≤ 1/
√
m.

(iii) ‖aκ
i ‖ ≤ αie

κ3dεη̄/rd, ∀i ∈ S.

Proof.

(i) By Lemma B.3, we have that

v̂ol(PAκ) ≥ v̂ol(PA0)
κ∏

t=1

√
1 + 3η2

i

(1 + 6εηt)d
.

Using the inequalities 1 + x ≤ ex ∀x ∈ R, and 1 + x ≥ ex/3, ∀x ∈ [0, 3],
we see that

κ∏

t=1

√
1 + 3η2

t

(1 + 6εηt)d
≥ e

∑κ
t=1 η2

t /2−3dεηt .

22 Daniel Dadush, László A. Végh, and Giacomo Zambelli

Since
∑κ

t=1 η
2
t subject to

∑κ
t=1 ηt/κ = η̄ is minimized when ηt = η̄,

∀t ∈ [κ], we see that

e
∑κ

t=1 η2
t /2−3dεηi ≥ eκ(η̄

2/2−3dεη̄) = eκη̄(η̄/2−3dε).

The statement follows by noting that if η̄ ≥ 12εd, then η̄(η̄/2 − 3dε) ≥
η̄2/4.

(ii) Noting that P κ
A is contained inside a d-dimensional unit ball and

that PA0 contains a d-dimensional ball of radius r, we see that

v̂ol(PAκ)

v̂ol(PA0)
≤ 1

rd
. (19)

Consider now κ ≥ 4d ln(1/r)/γ2 and assume for a contradiction that
η̄ > max {γ, 12εd}. Since then η̄ ≥ 12εd, by the first part of the Lemma

v̂ol(PAN) ≥ v̂ol(PA0)eκ(η̄
2/4) > v̂ol(PA0)e(4d ln(1/r)/γ2)(γ2/4) =

1

rd
v̂ol(PA0) ,

a contradiction to (19). Hence η̄ ≤ max {γ, 12εd} as needed.
If κ = N , since r ≥ 2−3L and m ≥ d, we have

N = 12m2L ≥ 4d ln(1/r)

(1/
√
m)2

.

The result now follows from the first part and the fact that 1/
√
m ≥ 12εd.

(iii) Select any t ∈ [κ] and j ∈ S. Note that wjt ≤ ηt holds. Using
Lemma B.3 and (18), we obtain

‖at
j‖

v̂ol(PAt)
=
‖at−1

j ‖
√

1 + 3w2
jt

v̂ol(PAt)
≤

‖at−1
j ‖

v̂ol(PAt−1)

√
1 + 3w2

jt

1 + 3η2
i

(1 + 6εηt)
d/2

≤
‖at−1

j ‖
v̂ol(PAt−1)

(1 + 6εηt)
d/2 ≤

‖at−1
j ‖

v̂ol(PAt−1)
e3dεηt .

Applying the above iteratively, and using (19), we get that

‖aκ
j ‖ ≤ ‖a0

j‖
v̂ol(PAκ)

v̂ol(PA0)

κ∏

i=1

e3εηi ≤ αj
eκ3dεη̄

rd
,

completing the proof. ⊓⊔

The next simple claim gives the change of the volume of a full dimensional
parallelepiped during a rescaling step.

Claim. Let B ⊆ [n] be a basis of A and let AB be the corresponding
submatrix. Given v ∈ Rm, such that ‖v‖ = 1, let T = (I + vvT), and let
A′ = TA. Then

det(Â′
B) = det(ÂB)

2
∏

j∈B

√
1 + 3(vTâj)2

.

Rescaled coordinate descent methods for Linear Programming 23

We are ready to prove Theorem B.1.

Proof (Proof of Theorem B.1). The first part is straightforward using
parts (ii) and (iii) of Lemma B.4. Indeed, we have η̄ ≤ 1/

√
m, r ≥ 2−3L,

d ≤ m. Therefore the bound in (iii) is at most K.
Let us now turn to the second part. For a contradiction, assume that
there exists a basis B ⊆ [n] for AN such that ‖aN

j ‖ ≤ Kαj for all j ∈ B.
Applying Claim B.1 iteratively for the sequence of N rescalings we obtain

det(ÂN
B) =

2N det(Â0
B)

∏N
t=1

∏
j∈B

√
1 + 3w2

jt

. (20)

It follows that

2N |det(Â0
B)| ≤

N∏

t=1

∏

j∈B

√
1 + 3w2

jt =
∏

j∈B

‖aN
j ‖
αj

≤ Km = 23m
2LeN/4 ,

(21)
where the first inequality follows from (20) and the fact that | det(ÂN

B)| ≤
1, the first equality follows from (18), and the second inequality follows
from the choice of B.
Since A0 is an integral matrix, it follows that |det(Â0

B)| ≥ 2−L. Since

e1/4 < 4/3, (21) implies that N ≤ 1+3m2

log2(3/2)
L, a contradiction. ⊓⊔

	Vegh_Rescaled coordinate_2017_cover
	Vegh_Rescaled coordinate_2017_author
	Rescaled coordinate descent methods for Linear Programming
	Introduction
	Algorithm 1
	Analysis
	Proof of Theorem 2.1

	Algorithm 2: A dual Chubanov algorithm
	Correctness of the algorithm
	Analysis based on a geometric potential

	Proofs of technical lemmas
	Finding a maximal support solution with Algorithm 1
	Analyzing the relative volume

