We consider the problem of minimization of a convex function on a simple set
with convex non-smooth inequality constraint and describe first-order methods
to solve such problems in different situations: smooth or non-smooth objective
function; convex or strongly convex objective and constraint; deterministic or
randomized information about the objective and constraint. We hope that it is
convenient for a reader to have all the methods for different settings in one
place. Described methods are based on Mirror Descent algorithm and switching
subgradient scheme. One of our focus is to propose, for the listed different
settings, a Mirror Descent with adaptive stepsizes and adaptive stopping rule.
This means that neither stepsize nor stopping rule require to know the
Lipschitz constant of the objective or constraint. We also construct Mirror
Descent for problems with objective function, which is not Lipschitz
continuous, e.g. is a quadratic function. Besides that, we address the problem
of recovering the solution of the dual problem