3,373 research outputs found
Perturbed kepler problem in general relativity with quaternions
The motion of binary star systems is re-examined in the presence of perturbations from the theory of general relativity. To handle the singularity of the Kepler problem, the equation of motion is regularized and linearized with quaternions. In this way first-order perturbation results are derived using the quaternion-based approach. </jats:p
Electronic and structural properties of alkali doped SWNT
Comprehensive experiments on structural and transport properties of alkali intercalated
single walled carbon nanotubes (SWNT) are presented. The increasing electron density was
measured as a shift of the Drude-edge in optical reflectivity in-situ with progressive doping. In
saturation-doped samples the Drude-edge shifts into the visible (to 25,000 - 30,000 cm— 1 for potassium
and rubidium doped samples) and the samples have a golden-brown color, similar to stage I
graphite. X-ray diffraction reveals a crystalline rope structure with expanded lattice constant, similar
to results of Duclaux et al. The change in the low temperature divergence of the resistivity after
degassing at high temperature and high vacuum and after K-doping is studied in-situ
Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene
Suspended graphene is difficult to image by scanning probe microscopy due to
the inherent van-der-Waals and dielectric forces exerted by the tip which are
not counteracted by a substrate. Here, we report scanning tunneling microscopy
data of suspended monolayer graphene in constant-current mode revealing a
surprising honeycomb structure with amplitude of 50200 pm and lattice
constant of 10-40 nm. The apparent lattice constant is reduced by increasing
the tunneling current , but does not depend systematically on tunneling
voltage or scan speed . The honeycomb lattice of the rippling
is aligned with the atomic structure observed on supported areas, while no
atomic corrugation is found on suspended areas down to the resolution of about
pm. We rule out that the honeycomb structure is induced by the feedback
loop using a changing , that it is a simple enlargement effect of
the atomic resolution as well as models predicting frozen phonons or standing
phonon waves induced by the tunneling current. Albeit we currently do not have
a convincing explanation for the observed effect, we expect that our intriguing
results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in
vdW parameter
Ordered low-temperature structure in K4C60 detected by infrared spectroscopy
Infrared spectra of a K4C60 single-phase thin film have been measured between
room temperature and 20 K. At low temperatures, the two high-frequency T1u
modes appear as triplets, indicating a static D2h crystal-field stabilized
Jahn-Teller distortion of the (C60)4- anions. The T1u(4) mode changes into the
known doublet above 250 K, a pattern which could have three origins: a dynamic
Jahn-Teller effect, static disorder between "staggered" anions, or a phase
transition from an orientationally-ordered phase to one where molecular motion
is significant.Comment: 4 pages, 2 figures submitted to Phys. Rev.
Small oscillations of a chiral Gross-Neveu system
We study the small oscillations regime (RPA approximation) of the
time-dependent mean-field equations, obtained in a previous work, which
describe the time evolution of one-body dynamical variables of a uniform Chiral
Gross-Neveu system. In this approximation we obtain an analytical solution for
the time evolution of the one-body dynamical variables. The two-fermion physics
can be explored through this solution. The condition for the existence of bound
states is examined.Comment: 21pages, Latex, 1postscript figur
Symmetries and Ambiguities in the linear sigma model with light quarks
We investigate the role of undetermined finite contributions generated by
radiative corrections in a linear sigma model with quarks.
Although some of such terms can be absorbed in the renormalization procedure,
one such contribution is left in the expression for the pion decay constant.
This arbitrariness is eliminated by chiral symmetry.Comment: 9 pages. Added references through the text; an author was added due
to an important contribution; corrected typos; the title also was changed.
Submitted to Modern Physics Letter
Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes
The electronic properties of p-doped single-walled carbon nanotube (SWNT) bulk samples were studied by temperature-dependent resistivity and thermopower, optical reflectivity, and Raman spectroscopy. These all give consistent results for the Fermi level downshift (Delta E(F)) induced by doping. We find Delta E(F) approximate to 0.35 eV and 0.50 eV for concentrated nitric and sulfuric acid doping respectively. With these values, the evolution of Raman spectra can be explained by variations in the resonance condition as E(F) moves down into the valence band. Furthermore, we find no evidence for diameter-selective doping, nor any distinction between doping responses of metallic and semiconducting tubes
Dispersion and uncertainty in multislit matter wave diffraction
We show that single and multislit experiments involving matter waves may be
constructed to assess correlations between the position and momentum of a
single free particle. These correlations give rise to position dependent phases
which develop dynamically and may play an important role in the interference
patterns. For large enough transverse coherence lenght such interference
patterns are noticeably different from those of a classical dispersion free
wave.Comment: 7 pages, 5 figures, revised manuscrip
The Plasma Structure of the Cygnus Loop from the Northeastern Rim to the Southwestern Rim
The Cygnus Loop was observed from the northeast to the southwest with
XMM-Newton. We divided the observed region into two parts, the north path and
the south path, and studied the X-ray spectra along two paths. The spectra can
be well fitted either by a one-component non-equilibrium ionization (NEI) model
or by a two-component NEI model. The rim regions can be well fitted by a
one-component model with relatively low \kTe whose metal abundances are
sub-solar (0.1--0.2). The major part of the paths requires a two-component
model. Due to projection effects, we concluded that the low kTe (about 0.2 keV)
component surrounds the high kTe (about 0.6 keV) component, with the latter
having relatively high metal abundances (about 5 times solar). Since the Cygnus
Loop is thought to originate in a cavity explosion, the low-kTe component
originates from the cavity wall while the high-kTe component originates from
the ejecta. The flux of the cavity wall component shows a large variation along
our path. We found it to be very thin in the south-west region, suggesting a
blowout along our line of sight. The metal distribution inside the ejecta shows
non-uniformity, depending on the element. O, Ne and Mg are relatively more
abundant in the outer region while Si, S and Fe are concentrated in the inner
region, with all metals showing strong asymmetry. This observational evidence
implies an asymmetric explosion of the progenitor star. The abundance of the
ejecta also indicates the progenitor star to be about 15 M_sun.Comment: 24 pages, 9 figures, Astrophysical Journal in pres
- …