331 research outputs found

    Army Families to Move to Aliamanu in June

    Get PDF

    2018 Custom Rate Survey

    Get PDF
    This fact sheet provides agricultural producers with current information regarding rates for custom farming operations in Utah

    Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications

    Get PDF
    Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm. Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes

    Causes and consequences of end-Ediacaran extinction: An update

    Get PDF
    Since the 1980s, the existence of one or more extinction events in the late Ediacaran has been the subject of debate. Discussion surrounding these events has intensified in the last decade, in concert with efforts to understand drivers of global change over the Ediacaran–Cambrian transition and the appearance of the more modern-looking Phanerozoic biosphere. In this paper we review the history of thought and work surrounding late Ediacaran extinctions, with a particular focus on the last 5 years of paleontological, geochemical, and geochronological research. We consider the extent to which key questions have been answered, and pose new questions which will help to characterize drivers of environmental and biotic change. A key challenge for future work will be the calculation of extinction intensities that account for limited sampling, the duration of Ediacaran ‘assemblage’ zones, and the preponderance of taxa restricted to a single ‘assemblage’; without these data, the extent to which Ediacaran bioevents represent genuine mass extinctions comparable to the ‘Big 5’ extinctions of the Phanerozoic remains to be rigorously tested. Lastly, we propose a revised model for drivers of late Ediacaran extinction pulses that builds off recent data and growing consensus within the field. This model is speculative, but does frame testable hypotheses that can be targeted in the next decade of work

    Guidelines for VCCT-Based Interlaminar Fatigue and Progressive Failure Finite Element Analysis

    Get PDF
    This document is intended to detail the theoretical basis, equations, references and data that are necessary to enhance the functionality of commercially available Finite Element codes, with the objective of having functionality better suited for the aerospace industry in the area of composite structural analysis. The specific area of focus will be improvements to composite interlaminar fatigue and progressive interlaminar failure. Suggestions are biased towards codes that perform interlaminar Linear Elastic Fracture Mechanics (LEFM) using Virtual Crack Closure Technique (VCCT)-based algorithms [1,2]. All aspects of the science associated with composite interlaminar crack growth are not fully developed and the codes developed to predict this mode of failure must be programmed with sufficient flexibility to accommodate new functional relationships as the science matures

    Sustained Use of the Impella 50 Heart Pump Enables Bridge to Clinical Decisions in 34 Patients

    Get PDF
    We studied whether sustained hemodynamic support (\u3e7 d) with the Impella 5.0 heart pump can be used as a bridge to clinical decisions in patients who present with cardiogenic shock, and whether such support can improve their outcomes. We retrospectively reviewed cases of patients who had Impella 5.0 support at our hospital from August 2017 through May 2019. Thirty-four patients (23 with cardiogenic shock and 11 with severely decompensated heart failure) underwent sustained support for a mean duration of 11.7 ± 9.3 days (range, ≤48 d). Of 29 patients (85.3%) who survived to next therapy, 15 were weaned from the Impella, 8 underwent durable left ventricular assist device placement, 4 were escalated to venoarterial extracorporeal membrane oxygenation support, and 2 underwent heart transplantation. The 30-day survival rate was 76.5% (26 of 34 patients). Only 2 patients had a major adverse event: one each had an ischemic stroke and flail mitral leaflet. None of the devices malfunctioned. Sustained hemodynamic support with the Impella 5.0 not only improved outcomes in patients who presented with cardiogenic shock, but also provided time for multidisciplinary evaluation of potential cardiac recovery, or the need for durable left ventricular assist device implantation or heart transplantation. Our study shows the value of using the Impella 5.0 as a bridge to clinical decisions
    corecore