36 research outputs found

    Reproductive biology of male franciscanas (Pontoporia blainvillei) (Mammalia: Cetacea) from Rio Grande do Sul, southern Brazil

    Get PDF
    The reproductive biology of male franciscanas (Pontoporia blainvillei), based on 121 individuals collected in Rio Grande do Sul State, southern Brazil, was studied. Estimates on age, length, and weight at attainment of sexual maturity are presented. Data on the reproductive seasonality and on the relationship between some testicular characteristics and age, size, and maturity status are provided. Sexual maturity was assessed by histological examination of the testes. Seasonality was determined by changes in relative and total testis weight, and in seminiferous tubule diameters. Testis weight, testicular index of maturity, and seminiferous tubule diameters were reliable indicators of sexual maturity, whereas testis length, age, length, and weight of the dolphin were not. Sexual maturity was estimated to be attained at 3.6 years (CI 95% =2.7–4.5) with the DeMaster method and 3.0 years with the logistic equation. Length and weight at attainment of sexual maturity were 128.2 cm (CI 95%=125.3–131.1 cm) and 26.4 kg (CI 95% =24.7–28.1 kg), respectively. It could not be verified that there was any seasonal change in the testis weight and in the seminiferous tubule diameters in mature males. It is suggested that at least some mature males may remain reproductively active throughout the year. The extremely low relative testis weight indicates that sperm competition does not occur in the species. On the other hand, the absence of secondary sexual characteristics, the reversed sexual size dimorphism, and the small number of scars from intrassexual combats in males reinforce the hypothesis that male combats for female reproductive access may be rare for franciscana. It is hypothesized that P. blainvillei form temporary pairs (one male copulating with only one female) during the reproductive period

    The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

    Get PDF
    Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications
    corecore