1,853 research outputs found

    Signal processing for molecular and cellular biological physics:an emerging field

    Get PDF
    Recent advances in our ability to watch the molecular and cellular processes of life in action-such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer-raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied

    Treatment of an Intramammary Bacterial Infection with 25-Hydroxyvitamin D3

    Get PDF
    Deficiency of serum levels of 25-hydroxyvitamin D3 has been correlated with increased risk of infectious diseases such as tuberculosis and influenza. A plausible reason for this association is that expression of genes encoding important antimicrobial proteins depends on concentrations of 1,25-dihydroxyvitamin D3 produced by activated immune cells at sites of infection, and that synthesis of 1,25-dihydroxyvitamin D3 is dependent on the availability of 25-hydroxyvitamin D3. Thus, increasing the availability of 25(OH)D3 for immune cell synthesis of 1,25-dihydroxyvitamin D3 at sites of infection has been hypothesized to aid in clearance of the infection. This report details the treatment of an acute intramammary infection with infusion of 25-hydroxyvitamin D3 to the site of infection. Ten lactating cows were infected with in one quarter of their mammary glands. Half of the animals were treated intramammary with 25-hydroxyvitamin D3. The 25-hydroxyvitamin D3 treated animal showed significantly lower bacterial counts in milk and showed reduced symptomatic affects of the mastitis. It is significant that treatment with 25-hydroxyvitamin D3 reduced the severity of an acute bacterial infection. This finding suggested a significant non-antibiotic complimentary role for 25-hydroxyvitamin D3 in the treatment of infections in compartments naturally low in 25-hydroxyvitamin D3 such as the mammary gland and by extension, possibly upper respiratory tract infections

    Mangarara Formation: exhumed remnants of a middle Miocene, temperate carbonate, submarine channel-fan system on the eastern margin of Taranaki Basin, New Zealand

    Get PDF
    The middle Miocene Mangarara Formation is a thin (1–60 m), laterally discontinuous unit of moderately to highly calcareous (40–90%) facies of sandy to pure limestone, bioclastic sandstone, and conglomerate that crops out in a few valleys in North Taranaki across the transition from King Country Basin into offshore Taranaki Basin. The unit occurs within hemipelagic (slope) mudstone of Manganui Formation, is stratigraphically associated with redeposited sandstone of Moki Formation, and is overlain by redeposited volcaniclastic sandstone of Mohakatino Formation. The calcareous facies of the Mangarara Formation are interpreted to be mainly mass-emplaced deposits having channelised and sheet-like geometries, sedimentary structures supportive of redeposition, mixed environment fossil associations, and stratigraphic enclosure within bathyal mudrocks and flysch. The carbonate component of the deposits consists mainly of bivalves, larger benthic foraminifers (especially Amphistegina), coralline red algae including rhodoliths (Lithothamnion and Mesophyllum), and bryozoans, a warm-temperate, shallow marine skeletal association. While sediment derivation was partly from an eastern contemporary shelf, the bulk of the skeletal carbonate is inferred to have been sourced from shoal carbonate factories around and upon isolated basement highs (Patea-Tongaporutu High) to the south. The Mangarara sediments were redeposited within slope gullies and broad open submarine channels and lobes in the vicinity of the channel-lobe transition zone of a submarine fan system. Different phases of sediment transport and deposition (lateral-accretion and aggradation stages) are identified in the channel infilling. Dual fan systems likely co-existed, one dominating and predominantly siliciclastic in nature (Moki Formation), and the other infrequent and involving the temperate calcareous deposits of Mangarara Formation. The Mangarara Formation is an outcrop analogue for middle Miocene-age carbonate slope-fan deposits elsewhere in subsurface Taranaki Basin, New Zealand

    A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro

    Get PDF
    Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold

    Boosting Long-term Memory via Wakeful Rest: Intentional Rehearsal is not Necessary, Automatic Consolidation is Sufficient.

    Get PDF
    <div><p>People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is <i>not</i> dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is <i>sufficient</i> for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.</p></div

    Shedding light on the elusive role of endothelial cells in cytomegalovirus dissemination.

    Get PDF
    Cytomegalovirus (CMV) is frequently transmitted by solid organ transplantation and is associated with graft failure. By forming the boundary between circulation and organ parenchyma, endothelial cells (EC) are suited for bidirectional virus spread from and to the transplant. We applied Cre/loxP-mediated green-fluorescence-tagging of EC-derived murine CMV (MCMV) to quantify the role of infected EC in transplantation-associated CMV dissemination in the mouse model. Both EC- and non-EC-derived virus originating from infected Tie2-cre(+) heart and kidney transplants were readily transmitted to MCMV-naïve recipients by primary viremia. In contrast, when a Tie2-cre(+) transplant was infected by primary viremia in an infected recipient, the recombined EC-derived virus poorly spread to recipient tissues. Similarly, in reverse direction, EC-derived virus from infected Tie2-cre(+) recipient tissues poorly spread to the transplant. These data contradict any privileged role of EC in CMV dissemination and challenge an indiscriminate applicability of the primary and secondary viremia concept of virus dissemination

    In Vivo Activation of the Intracrine Vitamin D Pathway in Innate Immune Cells and Mammary Tissue during a Bacterial Infection

    Get PDF
    Numerous in vitro studies have shown that toll-like receptor signaling induces 25-hydroxyvitamin D3 1α-hydroxylase (1α-OHase; CYP27B1) expression in macrophages from various species. 1α-OHase is the primary enzyme that converts 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Subsequently, synthesis of 1,25(OH)2D3 by 1α-OHase in macrophages has been shown to modulate innate immune responses of macrophages. Despite the numerous in vitro studies that have shown 1α-OHase expression is induced in macrophages, however, evidence that 1α-OHase expression is induced by pathogens in vivo is limited. The objective of this study was to evaluate 1α-OHase gene expression in macrophages and mammary tissue during an in vivo bacterial infection with Streptococcus uberis. In tissue and secreted cells from the infected mammary glands, 1α-OHase gene expression was significantly increased compared to expression in tissue and cells from the healthy mammary tissue. Separation of the cells by FACS9 revealed that 1α-OHase was predominantly expressed in the CD14+ cells isolated from the infected mammary tissue. The 24-hydroxylase gene, a gene that is highly upregulated by 1,25(OH)2D3, was significantly more expressed in tissue and cells from the infected mammary tissue than from the healthy uninfected mammary tissue thus indicating significant local 1,25(OH)2D3 production at the infection site. In conclusion, this study provides the first in vivo evidence that 1α-OHase expression is upregulated in macrophages in response to bacterial infection and that 1α-OHase at the site of infection provides 1,25(OH)2D3 for local regulation of vitamin D responsive genes

    The reactive metabolite target protein database (TPDB) – a web-accessible resource

    Get PDF
    BACKGROUND: The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. DESCRIPTION: The Reactive Metabolite Target Protein Database (TPDB) is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i) string searches for author names and proteins names/synonyms, ii) more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii) commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. CONCLUSION: The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available a
    corecore