21,302 research outputs found

    Asymptotic safety, hypergeometric functions, and the Higgs mass in spectral action models

    Get PDF
    We study the renormalization group flow for the Higgs self coupling in the presence of gravitational correction terms. We show that the resulting equation is equivalent to a singular linear ODE, which has explicit solutions in terms of hypergeometric functions. We discuss the implications of this model with gravitational corrections on the Higgs mass estimates in particle physics models based on the spectral action functional.Comment: 25 pages, LaTeX, 8 PDF figure

    Rural Financial Markets in the Development of Bangladesh

    Get PDF

    Edge helicons and repulsion of fundamental edge magnetoplasmons in the quantum Hall regime

    Full text link
    A quasi-microscopic treatment of edge magnetoplasmons (EMP) is presented for very low temperatures and confining potentials smooth on the scale of the magnetic length 0\ell_{0} but sufficiently steep at the edges such that Landau level (LL) flattening can be discarded. The profile of the unperturbed electron density is sharp and the dissipation taken into account comes only from electron intra-edge and intra-LL transitions due to scattering by acoustic phonons. For wide channels and filling factors ν=1\nu =1 and 2, there exist independent EMP modes spatially symmetric and antisymmetric with respect to the edge. Some of these modes, named edge helicons, can propagate nearly undamped even when the dissipation is strong. Their density profile changes qualitatively during propagation and is given by a rotation of a complex vector function. For ν>2,\nu >2, the Coulomb coupling between the LLs leads to a repulsion of the uncoupled fundamental LL modes: the new modes have very different group velocities and are nearly undamped. The theory accounts well for the experimentally observed plateau structure of the delay times as well as for the EMP's period and decay rates.Comment: 12 pages, 6 figure

    Probabilistic computer model of optimal runway turnoffs

    Get PDF
    Landing delays are currently a problem at major air carrier airports and many forecasters agree that airport congestion will get worse by the end of the century. It is anticipated that some types of delays can be reduced by an efficient optimal runway exist system allowing increased approach volumes necessary at congested airports. A computerized Probabilistic Runway Turnoff Model which locates exits and defines path geometry for a selected maximum occupancy time appropriate for each TERPS aircraft category is defined. The model includes an algorithm for lateral ride comfort limits

    Our Studies on Egg Shell Fragility

    Get PDF
    Thin or Improperly formed egg shells cause serious losses to our poultry Industry, and the problem becomes progressively greater during aging of the laying flock. Therefore, the Animal Science and Chemistry Departments are undertaking work to attempt to understand the causes for greater fragility of the eggs of older laying hens and to reduce the problem by removing or alleviating the causes. Since the work has just begun, no results are yet available. The studies to be under taken are outlined below

    Effect of Dietary Protein Level and Restricted Feeding on Egg Production, Shell Quality and Certain Biochemical Parameters in the Laying Hen

    Get PDF
    The objectives of the present investigation are to determine (1) whether restricting feed intake will reduce the rate of lay while lengthening the laying period and improving egg shell quality, (2) whether dietary protein level is involved and (3) whether carbonic anhydrase activity of the shell gland or calcium binding protein of the duodenal lining or the shell gland are related to shell quality

    Simulation of Cosmic Ray neutrinos Interactions in Water

    Full text link
    The program CORSIKA, usually used to simulate extensive cosmic ray air showers, has been adapted to a water medium in order to study the acoustic detection of ultra high energy neutrinos. Showers in water from incident protons and from neutrinos have been generated and their properties are described. The results obtained from CORSIKA are compared to those from other available simulation programs such as Geant4.Comment: Talk presented on behalf of the ACoRNE Collaboration at the ARENA Workshop 200

    Magnetization Relaxation via Quantum and Classical Vortex Motion in a Bose Glass Superconductor

    Full text link
    I show that in Bose Glass superconductor with high jcj_c and at low TT the magnetization relaxation (S), dominated by quantum tunneling, is jc\propto{\sqrt j_c}, which crosses over to the conventional classical rate T/jc\propto T/j_c at higher TT and lower jcj_c, with the crossover Tjc3/2T^*\sim j_c^{3/2}. I argue that due to interactions between flux lines there exist three relaxation regimes, depending on whether BBϕBB_\phi, corresponding to Strongly-pinned Bose Glass (SBG) with large jc2j_{c2}, Mott Insulator (MI) with vanishing S, and Weakly-pinned Bose Glass (WBG) characterized by small jc1j_{c1}. I discuss the effects of interactions on jcj_c and focus attention on the recent experiment which is consistently described by the theory.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with figures already inside text; to appear in Phys. Rev. Lett.(1995

    Large Extra Dimensions from a Small Extra Dimension

    Get PDF
    Models with extra dimensions have changed our understanding of the hierarchy problem. In general, these models explain the weakness of gravity by diluting gravity in a large bulk volume, or by localizing the graviton away from the standard model. In this paper, we show that the warped geometries necessary for the latter scenario can naturally induce the large volumes necessary for the former. We present a model in which a large volume is stabilized without supersymmetry. We comment on the phenomenology of this scenario and generalizations to additional dimensions.Comment: Some formulae altered, conclusions unchange

    A First-Principles Approach to Insulators in Finite Electric Fields

    Full text link
    We describe a method for computing the response of an insulator to a static, homogeneous electric field. It consists of iteratively minimizing an electric enthalpy functional expressed in terms of occupied Bloch-like states on a uniform grid of k points. The functional has equivalent local minima below a critical field E_c that depends inversely on the density of k points; the disappearance of the minima at E_c signals the onset of Zener breakdown. We illustrate the procedure by computing the piezoelectric and nonlinear dielectric susceptibility tensors of III-V semiconductors.Comment: 4 pages, with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/is_ef/index.htm
    corecore