820 research outputs found

    Responses to Conflict and Cooperation in Adolescents with Anxiety and Mood Disorders

    Get PDF
    This study examined patterns of behavioral and emotional responses to conflict and cooperation in adolescents with anxiety/mood disorders and healthy peers. We compared performance on and emotional responses to the Prisoner’s Dilemma (PD) game, an economic exchange task involving conflict and cooperation, between adolescents with anxiety/depressive disorders (A/D) (N=21) and healthy comparisons (n=29). Participants were deceived to believe their co-player (a pre-programmed computer algorithm) was another study participant. A/D adolescents differed significantly from comparisons in patterns of play and emotional response to the game. Specifically, A/D participants responded more cooperatively to cooperative overtures from their co-players; A/D girls also reported more anger toward co-players than did comparison girls. Our findings indicate that A/D adolescents, particularly females, respond distinctively to stressful social interchanges. These findings offer a first step toward elucidating the mechanisms underlying social impairment in youth with internalizing disorders

    Genome Sequence of the Deltaproteobacterial Strain NaphS2 and Analysis of Differential Gene Expression during Anaerobic Growth on Naphthalene

    Get PDF
    Anaerobic polycyclic hydrocarbon (PAH) degradation coupled to sulfate reduction may be an important mechanism for in situ remediation of contaminated sediments. Steps involved in the anaerobic degradation of 2-methylnaphthalene have been described in the sulfate reducing strains NaphS3, NaphS6 and N47. Evidence from N47 suggests that naphthalene degradation involves 2-methylnaphthalene as an intermediate, whereas evidence in NaphS2, NaphS3 and NaphS6 suggests a mechanism for naphthalene degradation that does not involve 2-methylnaphthalene. To further characterize pathways involved in naphthalene degradation in NaphS2, the draft genome was sequenced, and gene and protein expression examined.Draft genome sequencing, gene expression analysis, and proteomic analysis revealed that NaphS2 degrades naphthoyl-CoA in a manner analogous to benzoyl-CoA degradation. Genes including the previously characterized NmsA, thought to encode an enzyme necessary for 2-methylnaphthalene metabolism, were not upregulated during growth of NaphS2 on naphthalene, nor were the corresponding protein products. NaphS2 may possess a non-classical dearomatizing enzyme for benzoate degradation, similar to one previously characterized in Geobacter metallireducens. Identification of genes involved in toluene degradation in NaphS2 led us to determine that NaphS2 degrades toluene, a previously unreported capacity. The genome sequence also suggests that NaphS2 may degrade other monoaromatic compounds.This study demonstrates that steps leading to the degradation of 2-naphthoyl-CoA are conserved between NaphS2 and N47, however while NaphS2 possesses the capacity to degrade 2-methylnaphthalene, naphthalene degradation likely does not proceed via 2-methylnaphthalene. Instead, carboxylation or another form of activation may serve as the first step in naphthalene degradation. Degradation of toluene and 2-methylnaphthalene, and the presence of at least one bss-like and bbs-like gene cluster in this organism, suggests that NaphS2 degrades both compounds via parallel mechanisms. Elucidation of the key genes necessary for anaerobic naphthalene degradation may provide the ability to track naphthalene degradation through in situ transcript monitoring

    Effects of Non-Aerobic Maximal Effort Exercise on Fatigue in Deconditioned Men and Women with Multiple Sclerosis

    Get PDF
    Multiple Sclerosis (MS) is a neurodegenerative disease of unknown etiology affecting women more frequently than men. Mental and physical fatigue complaints are often the most disabling symptoms for an MS patient. Both are multifactorial, potentially exacerbated by aerobic exercise, may prevent sustained physical functioning, and significantly interfere with activities of daily living1. A multi-center study was designed to investigate the effects of non-aerobic maximal effort exercise (MEE) for deconditioned persons with MS, with the expectation of minimizing fatigue. The IsoPUMP (Neuromuscular Engineering; Nashville, TN), is a specialized exercise and strength-sensing machine, designed to allow individuals to safely perform and record their non-aerobic MEE sessions. The Modified Fatigue Impact Scale (MFIS) and Multiple Sclerosis Functional Composite (MSFC) are common, accepted methods used to measure fatigue and function. The MFIS is a 21-item questionnaire which assesses the subjects’ perception of physical, cognitive, and psychosocial aspects of fatigue over a four-week period2. Each of the 21 items are scored on a scale from 0 (never) to 4 (almost always), and the total MFIS score is calculated by summing the circled number for each item. Total scores can range from 0 to 84; higher scores indicating a greater impact of fatigue on the person. The MFIS has three distinct subscales: (1) physical, (2) cognitive, and (3) psychosocial. These subscales can be scored independently by summing the questions that pertain to each subscale2. The MFIS physical subscale score can range from 0 – 36 and the MFIS cognitive subscale score can range from 0 – 40. The MSFC combines clinical measures used to assess lower limb function (Timed 25-Foot Walk [25-FW]), upper limb function (9-Hole Peg Test [9-HPT]), and cognition (Paced Auditory Serial Addition Test [PASAT-3”])3. The 25-FW is a quantitative measure of lower extremity function. The 9-HPT is a quantitative measure of arm and hand function where a subject inserts and then removes 9 pegs from a board, using one hand at a time. The time is recorded for each hand with the dominant hand trial first and the non-dominant hand trial second. The final score is recorded as the mean time for both hands. The PASAT-3” is a measure of cognitive function, specifically assessing auditory information processing speed, short-term memory, flexibility, and calculation ability. Cognitive dysfunction affects half of all MS patients; slowing ability to reason, concentrate, and recall5. In this test subjects listen to a series of 61 spoken numbers separated by 3 seconds and must add each number to the prior number. Their final PASAT-3” score is the number of correct additions in the series, with 60 reflecting a perfect score. The MSFC is then evaluated by creating Z-scores for each component, which compare each outcome with the average outcome of the study population. The three Z-scores are then averaged to create an overall composite score (the MSFC score) which represents change over time for that population of MS subjects3

    Library preparation methodology can influence genomic and functional predictions in human microbiome research.

    Get PDF
    Observations from human microbiome studies are often conflicting or inconclusive. Many factors likely contribute to these issues including small cohort sizes, sample collection, and handling and processing differences. The field of microbiome research is moving from 16S rDNA gene sequencing to a more comprehensive genomic and functional representation through whole-genome sequencing (WGS) of complete communities. Here we performed quantitative and qualitative analyses comparing WGS metagenomic data from human stool specimens using the Illumina Nextera XT and Illumina TruSeq DNA PCR-free kits, and the KAPA Biosystems Hyper Prep PCR and PCR-free systems. Significant differences in taxonomy are observed among the four different next-generation sequencing library preparations using a DNA mock community and a cell control of known concentration. We also revealed biases in error profiles, duplication rates, and loss of reads representing organisms that have a high %G+C content that can significantly impact results. As with all methods, the use of benchmarking controls has revealed critical differences among methods that impact sequencing results and later would impact study interpretation. We recommend that the community adopt PCR-free-based approaches to reduce PCR bias that affects calculations of abundance and to improve assemblies for accurate taxonomic assignment. Furthermore, the inclusion of a known-input cell spike-in control provides accurate quantitation of organisms in clinical samples

    Increased UV transmission by improving the manufacturing process for FS

    Get PDF
    ABSTRACT Optical designers have been designing ultraviolet (UV) systems at wavelengths in the UV region for many years. With increasing demand for deep UV applications, special considerations that are not applicable to traditional visible optics must be taken to produce the optics. Specifically as the wavelength of incident light decreases, the importance of very smooth surfaces increases. The intent of this project is to increase the performance of UV optics in a four-phase project. The first phase consists of characterizing sub-surface damage using destructive methods to enable process control, the second phase (presented here) focuses on polishing methods, the third phase will include cleaning and possible etching protocols and the fourth phase will be improving thin film coating performance. Keywords: Ultraviolet, fused silica, polishing, coating INTRODUCTION As trends in UV optical system design shift to shorter UV wavelengths, optical manufacturing has to be more conscious of the effect that subsurface damage, surface features, residual contamination from polishing and cleaning and coating have on the residual performance of the optics in their systems. For many years, researchers have tackled partial aspects of these problems. For example, Bloembergen 1 stated that cracks and pores on an optical surface will lead to laser damage (LD) when incident with a laser beam. Neauport et al. 2 spoke to two of the main damage initiators of LD, sub-surface damage (SSD) and nano-absorbing centers, focusing mainly on the latter. They used fused silica optics in high power laser applications at 351nm. Higher cerium concentration on the surfaces strongly correlated with increased damage density. Aluminum, copper and iron did not have similar correlations. Neauport et al. also tried to correlate the presence of cerium with damage morphology but the results were inconclusive. Yoshiyama et al. 3 studied the effects of polishing, etching, cleaving and water leaching on the UV damage of fused silica. The surfaces were all exposed to a Nd:YAG laser at 355nm. Micropits were found on the polished surface. Their analysis found high concentrations of Al, B, Ce and Zr. The concentrations of the Al, B and Zr all decreased rapidly to less than 10% of the maximum value at a depth of 50nm, but the Ce required ~100nm before decreasing to less than 10% of its maximum value. A second sample etched with a buffered HF solution had a lower pit density than the polished surface. The pit density decreased exponentially with the etched layer thickness indicating that the cerium is a precursor to laser damage. Micropits found on the cleaved surface indicated that cerium contamination is not the only cause of damage. It is hypothesized that damage initiated because of residual stresses and permanent mechanical damage from the cleaving process. Hydrolyzed cleaved surfaces were found to decrease the laser damage threshold. Camp et al. 4 determined that the zirconia conventionally polished surfaces have a higher laser damage threshold at 355nm compared to ceria polished surfaces. They also observed that damage typically centered around scratches or digs on the surface of the parts. Néauport et al

    Tertiary-Treated Municipal Wastewater is a Significant Point Source of Antibiotic Resistance Genes Into Duluth-Superior Harbor

    Get PDF
    In this study, the impact of tertiary-treated municipal wastewater on the quantity of several antibiotic resistance determinants in Duluth-Superior Harbor was investigated by collecting surface water and sediment samples from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake Superior. Quantitative PCR (qPCR) was used to target three different genes encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene encoding the integrase of class 1 integrons (intI1), and total bacterial abundance (16S rRNA genes) as well as total and human fecal contamination levels (16S rRNA genes specific to the genus Bacteroides). The quantities of tet(A), tet(X), tet(W), intI1, total Bacteroides, and human-specific Bacteroides were typically 20-fold higher in the tertiary-treated wastewater than in nearby surface water samples. In contrast, the quantities of these genes in the St. Louis River and Lake Superior were typically below detection. Analysis of sequences of tet(W) gene fragments from four different samples collected throughout the study site supported the conclusion that tertiary-treated municipal wastewater is a point source of resistance genes into Duluth-Superior Harbor. This study demonstrates that the discharge of exceptionally treated municipal wastewater can have a statistically significant effect on the quantities of antibiotic resistance genes in otherwise pristine surface waters

    MYC Overexpression Induces Prostatic Intraepithelial Neoplasia and Loss of Nkx3.1 in Mouse Luminal Epithelial Cells

    Get PDF
    Lo-MYC and Hi-MYC mice develop prostatic intraepithelial neoplasia (PIN) and prostatic adenocarcinoma as a result of MYC overexpression in the mouse prostate[1]. However, prior studies have not determined precisely when, and in which cell types, MYC is induced. Using immunohistochemistry (IHC) to localize MYC expression in Lo-MYC transgenic mice, we show that morphological and molecular alterations characteristic of high grade PIN arise in luminal epithelial cells as soon as MYC overexpression is detected. These changes include increased nuclear and nucleolar size and large scale chromatin remodeling. Mouse PIN cells retained a columnar architecture and abundant cytoplasm and appeared as either a single layer of neoplastic cells or as pseudo-stratified/multilayered structures with open glandular lumina—features highly analogous to human high grade PIN. Also using IHC, we show that the onset of MYC overexpression and PIN development coincided precisely with decreased expression of the homeodomain transcription factor and tumor suppressor, Nkx3.1. Virtually all normal appearing prostate luminal cells expressed high levels of Nkx3.1, but all cells expressing MYC in PIN lesions showed marked reductions in Nkx3.1, implicating MYC as a key factor that represses Nkx3.1 in PIN lesions. To determine the effects of less pronounced overexpression of MYC we generated a new line of mice expressing MYC in the prostate under the transcriptional control of the mouse Nkx3.1 control region. These “Super-Lo-MYC” mice also developed PIN, albeit a less aggressive form. We also identified a histologically defined intermediate step in the progression of mouse PIN into invasive adenocarcinoma. These lesions are characterized by a loss of cell polarity, multi-layering, and cribriform formation, and by a “paradoxical” increase in Nkx3.1 protein. Similar histopathological changes occurred in Hi-MYC mice, albeit with accelerated kinetics. Our results using IHC provide novel insights that support the contention that MYC overexpression is sufficient to transform prostate luminal epithelial cells into PIN cells in vivo. We also identified a novel histopathologically identifiable intermediate step prior to invasion that should facilitate studies of molecular pathway alterations occurring during early progression of prostatic adenocarcinomas
    corecore