58,330 research outputs found
Strain Rate Sensitive Constitutive Equations
Stain rate sensitive constitutive equations using yield criterion which incorporates second and third invariants of stress deviato
Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems
New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all) localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822). The third event and fourth event are lumped together, as there is no hemipelagic sediment between them. The age of this event is A.D. 1524 (1445-1664), though we are not certain whether this event represents one event or two. The fifth event age is A.D. 1204 (1057-1319), and the sixth event age is A.D. 1049 (981-1188). These results are in relatively good agreement with the onshore work to date, which indicates an age for the penultimate event in the mid-1600 s, the most likely age for the third event of ?? 1500-1600, and a fourth event ?? 1300. We presently do not have the spatial sampling needed to test for synchroneity of events along the Northern San Andreas, and thus cannot determine with confidence that the observed turbidite record is earthquake generated. However, the good agreement in number of events between the onshore and offshore records suggests that, as in Cascadia, turbidite triggers other than earthquakes appear not to have added significantly to the turbidite record along the northernmost San Andreas margin during the last ?? 2000 years
Flow properties of suspensions rich in solids
Mathematical evaluation of flow properties of fluids carrying high concentrations of solids in suspension relates suspension viscosity to physical properties of the solids and liquids, and provides a means for predicting flow behavior. A technique for calculating a suspensions flow rates is applicable to the design of pipelines
Quantum geometry from 2+1 AdS quantum gravity on the torus
Wilson observables for 2+1 quantum gravity with negative cosmological
constant, when the spatial manifold is a torus, exhibit several novel features:
signed area phases relate the observables assigned to homotopic loops, and
their commutators describe loop intersections, with properties that are not yet
fully understood. We describe progress in our study of this bracket, which can
be interpreted as a q-deformed Goldman bracket, and provide a geometrical
interpretation in terms of a quantum version of Pick's formula for the area of
a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved
figures and extra figures. To appear GER
Superspace Formulation for the BRST Quantization of the Chiral Schwinger Model
It has recently been shown that the Field Antifield quantization of anomalous
irreducible gauge theories with closed algebra can be represented in a BRST
superspace where the quantum action at one loop order, including the Wess
Zumino term, and the anomalies show up as components of the same superfield. We
show here how the Chiral Schwinger model can be represented in this
formulation.Comment: 11 pages, Late
Letter to John L. Matthiesen from C. E. Nelson, May 15, 1950, with enclosed letter
Letter to Mr. John L. Matthiesen of John W. Graham & Co. from C. E. Nelson, Chairman, Father\u27s Day Council. Enclosed letter is addressed to Father\u27s Day Council, and is from Joseph D. Hopkins, Vice President of EMRY\u27s.https://digitalcommons.whitworth.edu/fathers-day-correspondence/1102/thumbnail.jp
Three Numerical Puzzles and the Top Quark's Chiral Weak-Moment
Versus the standard model's t --> W b decay helicity amplitudes, three
numerical puzzles occur at the 0.1 % level when one considers the amplitudes in
the case of an additional (f_M + f_E) coupling of relative strength 53 GeV. The
puzzles are theoretical ones which involve the t --> W b decay helicity
amplitudes in the two cases, the relative strength of this additional coupling,
and the observed masses of these three particles. A deeper analytic realization
is obtained for two of them. Equivalent realizations are given for the
remaining one. An empirical consequence of these analytic realizations is that
it is important to search for effects of a large chiral weak-moment of the
top-quark, the effective mass-scale is about 53 GeV. A full theoretical
resolution would include relating the origin of such a chiral weak-moment and
the mass generation of the top-quark, the W-boson, and probably the b-quark.Comment: 18 pages, 1 postscript table (revised to better explain notation,
model #1, add a little material...
Comparative Quantizations of (2+1)-Dimensional Gravity
We compare three approaches to the quantization of (2+1)-dimensional gravity
with a negative cosmological constant: reduced phase space quantization with
the York time slicing, quantization of the algebra of holonomies, and
quantization of the space of classical solutions. The relationships among these
quantum theories allow us to define and interpret time-dependent operators in
the ``frozen time'' holonomy formulation.Comment: 24 pages, LaTeX, no figure
Letter to John W. Graham & Co. from C. E. Nelson, September 14, 1949
Letter to John W. Graham & Co., Spokane, Washington, from C. E. Nelson, 1950 Fund Raising Chairman, Father\u27s Day Council, Inc. Envelope included.https://digitalcommons.whitworth.edu/fathers-day-correspondence/1099/thumbnail.jp
- …