95 research outputs found
Recommended from our members
Prostaglandin E2 promotes survival of naive UCB T cells via the Wnt/β-catenin pathway and alters immune reconstitution after UCBT
The outcome of umbilical cord blood transplantation (UCBT) is compromised by low hematopoietic stem cell (HSC) doses leading to prolonged time to engraftment, delayed immunological reconstitution and late memory T-cell skewing. Exposure of UCB to dimethyl-prostaglandin E2 (dmPGE2) increases HSC in vivo. We determined that exposure of UCB T lymphocytes to dmPGE2 modified Wnt signaling resulting in T cell factor (TCF)-mediated transcription. Wnt signaling upregulated interleukin (IL)-7R and IL-2Rβ, resulting in enhanced survival mediated by the homeostatic cytokines IL-7 and IL-15. dmPGE2 also induced components of the Wnt pathway and Wnt receptors, thereby priming UCB T cells to receive signals via Wnt ligands in vivo. We observed that the Wnt transcription factor TCF7 and its target EOMES were elevated in the T cells of patients who received PGE2-treated UCBs. Consistent with the role of Wnt/β-catenin signaling to induce and maintain naive, memory precursors and long-lived central memory CD8+ cells, these patients also had increased fractions of CD8+CD45RO-CD62L+ plus CD8+CD45RO+CD62L+ subsets encompassing these T-cell populations. These effects of the PGE2/Wnt/β-catenin axis may have significant implications for harnessing immunity in the context of UCBT, where impaired immune reconstitution is associated with late memory T-cell skewing
Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan
Purpose: Poly (L-lactic acid) (PLA) microparticles encapsulating Hepatitis B surface antigen (HBsAg) with alum and chitosan were investigated for their potential as a vaccine delivery system.
Methods: The microparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method with polyvinyl alcohol (PVA) or chitosan as the external phase stabilising agent showed a significant increase in the encapsulation efficiency of the antigen.
Results: PLA-Alum and PLA-chitosan microparticles induced HBsAg serum specific IgG antibody responses significantly higher than PLA only microparticles and free antigen following subcutaneous administration. Chitosan not only imparted a positive charge to the surface of the microparticles but was also able to increase the serum specific IgG antibody responses significantly.
Conclusions: The cytokine assays showed that the serum IgG antibody response induced is different according to the formulation, indicated by the differential levels of interleukin 4 (IL-4), interleukin 6 (IL-6) and interferon gamma (IFN-γ). The microparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-4, IL-6 and IFN-γ
NucTools: analysis of chromatin feature occupancy profiles from high-throughput sequencing data
Background: Biomedical applications of high-throughput sequencing methods generate a vast amount of data in which numerous chromatin features are mapped along the genome. The results are frequently analysed by creating binary data sets that link the presence/absence of a given feature to specific genomic loci. However, the nucleosome occupancy or chromatin accessibility landscape is essentially continuous. It is currently a challenge in the field to cope with continuous distributions of deep sequencing chromatin readouts and to integrate the different types of discrete chromatin features to reveal linkages between them. Results: Here we introduce the NucTools suite of Perl scripts as well as MATLAB- and R-based visualization programs for a nucleosome-centred downstream analysis of deep sequencing data. NucTools accounts for the continuous distribution of nucleosome occupancy. It allows calculations of nucleosome occupancy profiles averaged over several replicates, comparisons of nucleosome occupancy landscapes between different experimental conditions, and the estimation of the changes of integral chromatin properties such as the nucleosome repeat length. Furthermore, NucTools facilitates the annotation of nucleosome occupancy with other chromatin features like binding of transcription factors or architectural proteins, and epigenetic marks like histone modifications or DNA methylation. The applications of NucTools are demonstrated for the comparison of several datasets for nucleosome occupancy in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). Conclusions: The typical workflows of data processing and integrative analysis with NucTools reveal information on the interplay of nucleosome positioning with other features such as for example binding of a transcription factor CTCF, regions with stable and unstable nucleosomes, and domains of large organized chromatin K9me2 modifications (LOCKs). As potential limitations and problems we discuss how inter-replicate variability of MNase-seq experiments can be addressed
Internet of Things and data mining: from applications to techniques and systems
The Internet of Things (IoT) is the result of the convergence of sensing, computing, and networking technologies, allowing devices of varying sizes and computational capabilities (things) to intercommunicate. This communication can be achieved locally enabling what is known as edge and fog computing, or through the well‐established Internet infrastructure, exploiting the computational resources in the cloud. The IoT paradigm enables a new breed of applications in various areas including health care, energy management and smart cities. This paper starts off with reviewing these applications and their potential benefits. Challenges facing the realization of such applications are then discussed. The sheer amount of data stemmed from devices forming the IoT requires new data mining systems and techniques that are discussed and categorized later in this paper. Finally, the paper is concluded with future research directions
Copy Number Alteration and Uniparental Disomy Analysis Categorizes Japanese Papillary Thyroid Carcinomas into Distinct Groups
The aim of the present study was to investigate chromosomal aberrations in sporadic Japanese papillary thyroid carcinomas (PTCs), concomitant with the analysis of oncogene mutational status. Twenty-five PTCs (11 with BRAFV600E, 4 with RET/PTC1, and 10 without mutation in HRAS, KRAS, NRAS, BRAF, RET/PTC1, or RET/PTC3) were analyzed using Genome-Wide Human SNP Array 6.0 which allows us to detect copy number alteration (CNA) and uniparental disomy (UPD), also referred to as copy neutral loss of heterozygosity, in a single experiment. The Japanese PTCs showed relatively stable karyotypes. Seven cases (28%) showed CNA(s), and 6 (24%) showed UPD(s). Interestingly, CNA and UPD were rarely overlapped in the same tumor; the only one advanced case showed both CNA and UPD with a highly complex karyotype. Thirteen (52%) showed neither CNA nor UPD. Regarding CNA, deletions tended to be more frequent than amplifications. The most frequent and recurrent region was the deletion in chromosome 22; however, it was found in only 4 cases (16%). The degree of genomic instability did not depend on the oncogene status. However, in oncogene-positive cases (BRAFV600E and RET/PTC1), tumors with CNA/UPD were less frequent (5/15, 33%), whereas tumors with CNA/UPD were more frequent in oncogene-negative cases (7/10, 70%), suggesting that chromosomal aberrations may play a role in the development of PTC, especially in oncogene-negative tumors. These data suggest that Japanese PTCs may be classified into three distinct groups: CNA+, UPD+, and no chromosomal aberrations. BRAFV600E mutational status did not correlate with any parameters of chromosomal defects
Lectures on holographic methods for condensed matter physics
These notes are loosely based on lectures given at the CERN Winter School on
Supergravity, Strings and Gauge theories, February 2009 and at the IPM String
School in Tehran, April 2009. I have focused on a few concrete topics and also
on addressing questions that have arisen repeatedly. Background condensed
matter physics material is included as motivation and easy reference for the
high energy physics community. The discussion of holographic techniques
progresses from equilibrium, to transport and to superconductivity.Comment: 1+85 pages. 15 figures. v2: typos fixed and references added. v3:
another typo fixe
- …