704 research outputs found

    Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications

    Get PDF
    Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly localized; indeed, disaggregation does not extend beyond approx. 1.5 crater radii. A cone-shaped region extending downward from the impact site is completely disaggregated, including powdered rock that escaped into the projectile tube. Petrographic analysis of crater ejecta and wall material will be presented. Finally, study of ejecta from 0.9- and 1.3-GPa simulations of volcanic explosions reveal a complete lack of shock metamorphism. The ejecta shows no evidence of PDF's, amorphization, high-pressure phases, or mosaicism. Instead, all deformation was brittle, with fractures irregular (not planar) and most intergranular. The extent of fracturing was remarkable, with the entire sample reduced to fragments of gravel size and smaller

    Deficiencies in European Monetary Union’s Credible Commitment against Monetary Expansion

    Get PDF

    Community Sales In Kansas

    Get PDF
    During the past quarter century in Kansas there has developed a unique economic unit that has restricted itself principally to the livestock industry. This development was facilitated greatly by the abnormal years of drought and depression in the decade of the 1930\u27s. The purpose of this paper is to investigate t he growth, development, operation, and economic value of the community sale in Kansas. A general survey of community sales throughout the state will be made ; however , the Salina Sales Pavilion of Salina , Kansas will be used as a model due to its geographic location, financial organization, and volume of business

    Geologic Relationships of the Southern Portion of the Boston Basin from the Blue Hills Eastward

    Get PDF
    Guidebook for field trips to the Boston area and vicinity : 68th annual meeting, New England Intercollegiate Geological Conference, October 8-10, 1976: Trip A-4; B-

    Metallization of Fluid Hydrogen

    Full text link
    The electrical resistivity of liquid hydrogen has been measured at the high dynamic pressures, densities and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 GPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) processes in which structural changes are paramount.Comment: 12 pages, RevTeX format. Figures available on request; send mail to: [email protected] To appear: Philosophical Transaction of the Royal Society

    The temperature of shock-compressed water

    Get PDF
    Temperatures from 3300–5200 K were measured in liquid H2O shocked to 50–80 GPa (500–800 kbar). A six-channel, time-resolved optical pyrometer was used to perform the measurements. Good agreement with the data is obtained by calculating the temperature with a volume-dependent Grüneisen parameter derived from double-shock data and a heat capacity at constant volume of 8.7 R per mol of H2O

    Entropy-Dominated Dissipation in Sapphire Shock-Compressed up to 400 GPa (4 Mbar)

    Full text link
    Sapphire (single-crystal Al2O3) is a representative Earth material and is used as a window and/or anvil in shock experiments. Pressure, for example, at the core-mantle boundary is about 130 gigapascals (GPa). Defects induced by 100-GPa shock waves cause sapphire to become opaque, which precludes measuring temperature with thermal radiance. We have measured wave profiles of sapphire crystals with several crystallographic orientations at shock pressures of 16, 23, and 86 GPa. At 23 GPa plastic-shock rise times are generally quite long (~100 ns) and their values depend sensitively on the direction of shock propagation in the crystal lattice. The long rise times are probably caused by the high strength of inter-atomic interactions in the ordered three-dimensional sapphire lattice. Our wave profiles and recent theoretical and laser-driven experimental results imply that sapphire disorders without significant shock heating up to about 400 GPa, above which Al2O3 is amorphous and must heat. This picture suggests that the characteristic shape of shock compression curves of many Earth materials at 100 GPa pressures is caused by a combination of entropy and temperature.Comment: 12 pages, 4 figure

    Properties of planetary fluids at high pressure and temperature

    Get PDF
    In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N2 and CH4. Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space

    Response of Seven Crystallographic Orientations of Sapphire Crystals to Shock Stresses of 16 to 86 GPa

    Full text link
    Shock-wave profiles of sapphire (single-crystal Al2O3) with seven crystallographic orientations were measured with time-resolved VISAR interferometry at shock stresses in the range 16 to 86 GPa. Shock propagation was normal to the surface of each cut. The angle between the c-axis of the hexagonal crystal structure and the direction of shock propagation varied from 0 for c-cut up to 90 degrees for m-cut in the basal plane. Based on published shock-induced transparencies, shock-induced optical transparency correlates with the smoothness of the shock-wave profile. The ultimate goal was to find the direction of shock propagation in sapphire that is most transparent as a window. Particle velocity histories were recorded at the interface between a sapphire crystal and a LiF window. In most cases measured wave profiles are noisy as a result of heterogeneity of deformation. Measured values of Hugoniot Elastic Limits (HELs) depend on direction of shock compression and peak shock stress. The largest HEL values were recorded for shock loading along the c-axis and perpendicular to c along the m-direction. Shock compression along the m- and s-directions is accompanied by the smallest heterogeneity of deformation and the smallest rise time of the plastic shock wave. m- and s-cut sapphire most closely approach ideal elastic-plastic flow, which suggests that m- and s-cut sapphire are probably the orientations that remains most transparent to highest shock pressures. Under purely elastic deformation sapphire has very high spall strength, which depends on load duration and peak stress. Plastic deformation of sapphire causes loss of its tensile strength.Comment: 18 pages, 18 figure
    • …
    corecore