86 research outputs found

    HIV's evasion of the cellular immune response

    Get PDF
    Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS, We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on ceils expressing individual MHC class I alietes have revealed that nef does not downmodulate HLA-C and HLA-E antigens, This selective downmodulation allows Infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75570/1/j.1600-065X.1999.tb01283.x.pd

    Biosynthesis of HLA-C heavy chains in melanoma cells with multiple defects in the expression of HLA-A, -B, -C molecules

    Get PDF
    Recent investigations have shown that malignant transformation may down-regulate the expression of class I HLA molecules, beta(2)-microglobulin (beta(2)m) and members of the antigen-processing machinery. In the present study, we HLA-genotyped and identified at a biochemical level the three (HLA-A25, -B8, -Cw7) class I alleles expressed by the previously described [D'Urso CM et al (1992) J Clin Invest 87: 284-292] beta(2)m-defective human melanoma FO-1 cell line and tested their ability to interact with calnexin, calreticulin and the TAP (transporter associated with antigen processing) complex. Ail these alleles were found to bind calnexin, but not calreticulin or the poorly expressed TAP complex, both in parental and beta(2)m-transfected FO-1 cells, demonstrating a complex defect of class I expression in FO-1 cells. In these conditions, Cw7 heavy chains interacted with calnexin more strongly than A25 and B8, and preferentially accumulated in the endoplasmic reticulum, in both a calnexin-associated and a calnexin-free form. In addition, they could be transported to the cell surface at low levels even in the absence of beta(2)m, without undergoing terminal glycosylation. These results establish a parallel between HLA-C and the murine D-b and L-d molecules which have been found to be surface expressed and functional in beta(2)m-defective cells. They also demonstrate distinctive features of HLA-C molecules. We propose that the accumulation of several assembly intermediates of HLA-C might favour the binding of peptide antigens not readily bound by HLA-A and -B molecules in neoplastic cells with suboptimal class I expression

    Rhesus macaque MHC class I molecules show differential subcellular localizations

    Get PDF
    The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding α1 and α2 domains, suggesting failure of peptide binding is responsible for retaining ‘intracellular’ Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes

    Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses

    Get PDF
    Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses

    Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules.

    Get PDF
    Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles

    Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes

    Full text link
    International audienceCytoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C-terminus of these CTL epitopes is predominantly generated by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus, and a clinically important epitope from melanoma-protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing and nardilysin contributed to both C-terminal and N-terminal CTL epitope generation. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer

    Assembly of the T-cell antigen receptor. Participation of the CD3 omega chain.

    Full text link
    Abstract The human TCR is composed of the Ti alpha beta heterodimer in association with the CD3 chains CD3 gamma delta epsilon zeta 2. Another chain, referred to as CD3 omega, has recently been described in T cells. CD3 omega is an intracellular protein transiently associated with the CD3 complex during the assembly of the TCR in the endoplasmic reticulum (ER) and it is not expressed on the cell surface. The function of CD3 omega is unknown but it has been suggested that it plays an important role in the assembly of the TCR. We have studied the possible function of CD3 omega in the human leukemic T-cell line Jurkat and different variants of this cell line. Cells were metabolically labeled, subjected to lysis, immunoprecipitated, and analyzed by SDS-PAGE. The results indicate that: 1) CD3 omega associates primarily with the CD3 delta epsilon complex; 2) CD3 omega is not associated with single Ti alpha or Ti beta chains, but is present in complexes composed of both the CD3 and the Ti chains; 3) CD3 omega is part of the complete, intracellular receptor complex Ti alpha beta/CD3 gamma epsilon delta omega zeta 2; and 4) CD3 omega dissociates from the Ti/CD3 complex in the ER before maturation of the Ti alpha beta heterodimer. On the basis of these results, we propose a model for the assembly and subunit stoichiometry of the TCR complex which includes the participation of the CD3 omega chain.</jats:p
    corecore