260 research outputs found

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    Coherence Resonance and Noise-Induced Synchronization in Globally Coupled Hodgkin-Huxley Neurons

    Get PDF
    The coherence resonance (CR) of globally coupled Hodgkin-Huxley neurons is studied. When the neurons are set in the subthreshold regime near the firing threshold, the additive noise induces limit cycles. The coherence of the system is optimized by the noise. A bell-shaped curve is found for the peak height of power spectra of the spike train, being significantly different from a monotonic behavior for the single neuron. The coupling of the network can enhance CR in two different ways. In particular, when the coupling is strong enough, the synchronization of the system is induced and optimized by the noise. This synchronization leads to a high and wide plateau in the local measure of coherence curve. The local-noise-induced limit cycle can evolve to a refined spatiotemporal order through the dynamical optimization among the autonomous oscillation of an individual neuron, the coupling of the network, and the local noise.Comment: five pages, five figure

    Memory functions and Correlations in Additive Binary Markov Chains

    Full text link
    A theory of additive Markov chains with long-range memory, proposed earlier in Phys. Rev. E 68, 06117 (2003), is developed and used to describe statistical properties of long-range correlated systems. The convenient characteristics of such systems, a memory function, and its relation to the correlation properties of the systems are examined. Various methods for finding the memory function via the correlation function are proposed. The inverse problem (calculation of the correlation function by means of the prescribed memory function) is also solved. This is demonstrated for the analytically solvable model of the system with a step-wise memory function.Comment: 11 pages, 5 figure

    An Analytical Study of Coupled Two-State Stochastic Resonators

    Full text link
    The two-state model of stochastic resonance is extended to a chain of coupled two-state elements governed by the dynamics of Glauber's stochastic Ising model. Appropriate assumptions on the model parameters turn the chain into a prototype system of coupled stochastic resonators. In a weak-signal limit analytical expressions are derived for the spectral power amplification and the signal-to-noise ratio of a two-state element embedded into the chain. The effect of the coupling between the elements on both quantities is analysed and array-enhanced stochastic resonance is established for pure as well as noisy periodic signals. The coupling-induced improvement of the SNR compared to an uncoupled element is shown to be limited by a factor four which is only reached for vanishing input noise.Comment: 29 pages, 5 figure

    System size resonance in coupled noisy systems and in the Ising model

    Get PDF
    We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean field are observed with the rate depending on the ensemble size. When a small periodic force acts on the ensemble, the linear response of the system has a maximum at a certain system size, similar to the stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different types of noisy oscillators and for different ensembles -- lattices with nearest neighbors coupling and globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.Comment: 4 page

    Nonstationary Stochastic Resonance in a Single Neuron-Like System

    Full text link
    Stochastic resonance holds much promise for the detection of weak signals in the presence of relatively loud noise. Following the discovery of nondynamical and of aperiodic stochastic resonance, it was recently shown that the phenomenon can manifest itself even in the presence of nonstationary signals. This was found in a composite system of differentiated trigger mechanisms mounted in parallel, which suggests that it could be realized in some elementary neural networks or nonlinear electronic circuits. Here, we find that even an individual trigger system may be able to detect weak nonstationary signals using stochastic resonance. The very simple modification to the trigger mechanism that makes this possible is reminiscent of some aspects of actual neuron physics. Stochastic resonance may thus become relevant to more types of biological or electronic systems injected with an ever broader class of realistic signals.Comment: Plain Latex, 7 figure

    Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling

    Get PDF
    This paper investigates the dependence of synchronization transitions of bursting oscillations on the information transmission delay over scale-free neuronal networks with attractive and repulsive coupling. It is shown that for both types of coupling, the delay always plays a subtle role in either promoting or impairing synchronization. In particular, depending on the inherent oscillation period of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions are manifested as well-expressed minima in the measure for spatiotemporal synchrony. For attractive coupling, the minima appear at every integer multiple of the average oscillation period, while for the repulsive coupling, they appear at every odd multiple of the half of the average oscillation period. The obtained results are robust to the variations of the dynamics of individual neurons, the system size, and the neuronal firing type. Hence, they can be used to characterize attractively or repulsively coupled scale-free neuronal networks with delays.Comment: 15 pages, 9 figures; accepted for publication in PLoS ONE [related work available at http://arxiv.org/abs/0907.4961 and http://www.matjazperc.com/

    Imaginarios en disputa o sobre la territorialización de un conflicto urbano. El caso de “La Canchita de los Bomberos” (Mar del Plata, Argentina)

    Get PDF
    Apenas transcurridos tres meses de la creación del Programa Crédito Argentino del Bicentenario para la Vivienda Única Familiar, el Municipio de General Pueyrredón anuncia las tierras disponibles para comprometer en su implementación; entre ellas, el predio conocido como Canchita de los Bomberos de la ciudad de Mar del Plata. Frente a ello, se conforma un grupo de vecinos autoconvocados en defensa de su utilización como espacio público-verde, llevando a cabo diversas estrategias cuyo objetivo es evitar la construcción de viviendas en esa zona. Paralelamente, otras personas manifiestan su parecer en relación a la ejecución del programa y desarrollan prácticas que cuestionan la legitimidad de las demandas sostenidas por aquellos vecinos. El propósito del artículo es analizar las formas de apropiación simbólica que se refuerzan y/o modifican en función de la disputa; lo que Melé (2003) llama el proceso de territorialización del conflicto. Se argumenta que, aunque se produce un choque de imaginarios (Hiernaux; 2008a), emerge un imaginario dominante que logra imponerse y legitimar el uso y disfrute del espacio a su favor

    Nonstationary Stochastic Resonance

    Full text link
    It is by now established that, remarkably, the addition of noise to a nonlinear system may sometimes facilitate, rather than hamper the detection of weak signals. This phenomenon, usually referred to as stochastic resonance, was originally associated with strictly periodic signals, but it was eventually shown to occur for stationary aperiodic signals as well. However, in several situations of practical interest, the signal can be markedly nonstationary. We demonstrate that the phenomenon of stochastic resonance extends to nonstationary signals as well, and thus could be relevant to a wider class of biological and electronic applications. Building on both nondynamic and aperiodic stochastic resonance, our scheme is based on a multilevel trigger mechanism, which could be realized as a parallel network of differentiated threshold sensors. We find that optimal detection is reached for a number of thresholds of order ten, and that little is gained by going much beyond that number. We raise the question of whether this is related to the fact that evolution has favored some fixed numbers of precisely this order of magnitude in certain aspects of sensory perception.Comment: Plain Latex, 6 figure
    • …
    corecore