4,002 research outputs found

    Spherically symmetric model stellar atmospheres and limb darkening II: limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars

    Full text link
    Limb darkening is a fundamental ingredient for interpreting observations of planetary transits, eclipsing binaries, optical/infrared interferometry and microlensing events. However, this modeling traditionally represents limb darkening by a simple law having one or two coefficients that have been derived from plane-parallel model stellar atmospheres, which has been done by many researchers. More recently, researchers have gone beyond plane-parallel models and considered other geometries. We previously studied the limb-darkening coefficients from spherically symmetric and plane-parallel model stellar atmospheres for cool giant and supergiant stars, and in this investigation we apply the same techniques to FGK dwarf stars. We present limb-darkening coefficients, gravity-darkening coefficients and interferometric angular diameter corrections from Atlas and SAtlas model stellar atmospheres. We find that sphericity is important even for dwarf model atmospheres, leading to significant differences in the predicted coefficients.Comment: 9 pages, 8 figures. Accepted for publication in A&

    High Temperature Superfluidity in Double Bilayer Graphene

    Full text link
    Exciton bound states in solids between electrons and holes are predicted to form a superfluid at high temperatures. We show that by employing atomically thin crystals such as a pair of adjacent bilayer graphene sheets, equilibrium superfluidity of electron-hole pairs should be achievable for the first time. The transition temperatures are well above liquid helium temperatures. Because the sample parameters needed for the device have already been attained in similar graphene devices, our work suggests a new route towards realizing high-temperature superfluidity in existing quality graphene samples.Comment: 6 pages, 4 figures, effect of screening on superfluidity include

    Limb Darkening and Planetary Transits II: Intensity profile correction factors for a grid of model stellar atmospheres

    Full text link
    The ability to observe extrasolar planets transiting their stars has profoundly changed our understanding of these planetary systems. However, these measurements depend on how well we understand the properties of the host star, such as radius, luminosity and limb darkening. Traditionally, limb darkening is treated as a parameterization in the analysis, but these simple parameterizations are not accurate representations of actual center-to-limb intensity variations (CLIV) to the precision needed for interpreting these transit observations. This effect leads to systematic errors for the measured planetary radii and corresponding measured spectral features. We compute synthetic planetary transits using model stellar atmosphere CLIV and corresponding best-fit limb-darkening laws for a grid spherically symmetric model stellar atmospheres. From these light curves we measure the differences in flux as a function of the star's effective temperature, gravity, mass, and the inclination of the planet's orbit.Comment: 10 pages, 8 figures, submitted to AAS journals. Comments welcom

    Indicators of Mass in Spherical Stellar Atmospheres

    Full text link
    Mass is the most important stellar parameter, but it is not directly observable for a single star. Spherical model stellar atmospheres are explicitly characterized by their luminosity (LL_\star), mass (MM_\star) and radius (RR_\star), and observations can now determine directly LL_\star and RR_\star. We computed spherical model atmospheres for red giants and for red supergiants holding LL_\star and RR_\star constant at characteristic values for each type of star but varying MM_\star, and we searched the predicted flux spectra and surface-brightness distributions for features that changed with mass. For both stellar classes we found similar signatures of the star's mass in both the surface-brightness distribution and the flux spectrum. The spectral features have been use previously to determine log10(g)\log_{10} (g), and now that the luminosity and radius of a non-binary red giant or red supergiant can be observed, spherical model stellar atmospheres can be used to determine the star's mass from currently achievable spectroscopy. The surface-brightness variations with mass are slightly smaller than can be resolved by current stellar imaging, but they offer the advantage of being less sensitive to the detailed chemical composition of the atmosphere.Comment: 24 pages, 9 figure

    Long-term polarization observations of Mira variable stars suggest asymmetric structures

    Full text link
    Mira and semi-regular variable stars have been studied for centuries but continue to be enigmatic. One unsolved mystery is the presence of polarization from these stars. In particular, we present 40 years of polarization measurements for the prototype o Ceti and V CVn and find very different phenomena for each star. The polarization fraction and position angle for Mira is found to be small and highly variable. On the other hand, the polarization fraction for V CVn is large and variable, from 2 - 7 %, and its position angle is approximately constant, suggesting a long-term asymmetric structure. We suggest a number of potential scenarios to explain these observations.Comment: 2 pages, 1 figure, poster presented at IAU Symposium 301, Precision Asteroseismology, August 2013, Wroclaw, Polan

    A comparison of plastic collapse and limit loads for single mitred pipe bends under in-plane bending

    Get PDF
    This paper presents a comparison of the plastic collapse loads from experimental in-plane bending tests on three 90 degree single un-reinforced mitred pipe bends, with the results from various 3D solid finite element models. The bending load applied reduced the bend angle and in turn, the resulting cross-sectional ovalisation led to a recognised weakening mechanism, which is only observable by testing or by including large displacement effects in the plastic finite element solution. A small displacement limit solution with an elastic-perfectly-plastic material model overestimated the collapse load by 40%. The plastic collapse finite element solution produced excellent agreement with experiment

    Using limb darkening to measure fundamental parameters of stars

    Full text link
    Context. Limb darkening is an important tool for understanding stellar atmospheres, but most observations measuring limb darkening assume various parameterizations that yield no significant information about the structure of stellar atmospheres. Aims. We use a specific limb-darkening relation to study how the best-fit coefficients relate to fundamental stellar parameters from spherically symmetric model stellar atmospheres. Methods. Using a grid of spherically symmetric Atlas model atmospheres, we compute limb-darkening coefficients, and develop a novel method to predict fundamental stellar parameters. Results. We find our proposed method predicts the mass of stellar atmosphere models given only the radius and limb-darkening coefficients, suggesting that microlensing, interferometric, transit and eclipse observations can constrain stellar masses. Conclusions. This novel method demonstrates that limb-darkening parameterizations contain important information about the structure of stellar atmospheres, with the potential to be a valuable tool for measuring stellar masses.Comment: 8 pages, 6 figures, 2 tables, A&A accepte
    corecore