105 research outputs found

    Introduction

    Get PDF

    Immune modulation of biologic systems in renal somatic cells

    Get PDF

    Experimental strategies for the study of cellular immunity in renal disease

    Get PDF

    Progressive renal fibrosis in murine polycystic kidney disease: An immunohistochemical observation

    Get PDF
    Progressive renal fibrosis in murine polycystic kidney disease: An immunohistochemical observation.BackgroundThe appearance of interstitial fibrosis in polycystic kidneys is emblematic of progressive disease. Matrix forming this scar tissue is derived from local renal cells in response to cystogenesis. We investigated the phenotype of collagen-producing cells in the cystic kidneys of DBA/2-pcy mice to better characterize the spectrum of interstitial cells associated with renal fibrogenesis.MethodsThe extent of interstitial fibrosis and the number of fibroblasts in cystic kidneys were first quantitated over time using computer-assisted image analysis. Subsequently, antisera to four cell protein markers were studied by coexpression immunohistochemistry during progression of fibrosis using confocal microscopy. The antisera included fibroblast-specific protein 1 (FSP1) for fibroblast phenotype, α-smooth muscle actin (α-SMA) for contractile phenotype, vimentin (VIM) for mesenchymal phenotype, and heat shock protein 47 (HSP47) for interstitial collagen-producing phenotype.ResultsInterstitial fibrosis in cystic kidneys gradually increased throughout the 30-week observation period of our study. With progression of cystogenesis, most of the tubules in pcy mice either dilated or disappeared with time. FSP1+ fibroblasts were distributed sparsely throughout the renal interstitium of young pcy and wild-type mice. Their number increased in the widening fibrotic septa by 18 weeks of age and persisted through 30 weeks of the study interval. Some epithelia among remnant tubules trapped within fibrotic septa around adjacent cysts also acquired the phenotype of FSP1+, HSP47+ collagen-producing fibroblasts, suggesting a possible role for epithelial-mesenchymal transformation (EMT) in this process. Most FSP1+ fibroblasts were α-SMA-, but HSP47+, suggesting they were producing collagen proteins for the extracellular matrix. α-SMA+, FSP1-, HSP47+ or HSP47- cells were also observed, and the latter tended to distribute independently in a linear pattern, reminiscent of vasculature adjacent to forming cysts. VIM+ expression was not observed in α-SMA+ cells.ConclusionsMany nonoverlapping as well as fewer overlapping populations of FSP1+ and α-SMA+ cells shared in the collagen expression associated with progressive fibrogenesis in pcy mice undergoing cystogenesis. Some FSP1+ fibroblasts are likely derived from tubular epithelium undergoing EMT, while αSMA+, VIM- cells probably represent vascular smooth muscle cells or pericytes surviving vessel attenuation during the chaos of fibrogenesis. Importantly, not all interstitial cells producing collagens are α-SMA+

    Transcriptional Networks in Epithelial-Mesenchymal Transition

    Get PDF
    Epithelial-mesenchymal transition (EMT) changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs) in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts

    Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease

    Get PDF
    Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease.BackgroundThe fibroblast growth factor (FGF) family has functions in development, cell proliferation, migration, and differentiation. While FGF-2 induces fibrosis, the role of FGF-1 in inflammation and fibrosis is less defined. We examined the expression of FGF-1 and FGF receptor (FGFR-1) to determine if renal diseases with varying etiologies of inflammation, including lupus nephritis (LN), acute interstitial nephritis (AIN) and acute rejection superimposed on chronic allograft nephropathy (CAN), showed varying patterns of expression. We also examined the expression of fibroblast-specific protein-1 (FSP-1), which has been linked to epithelial-mesenchymal transition (EMT) and fibrosis, to determine whether it was linked to potential profibrotic and inflammatory FGF-1 mechanisms.MethodsProliferative LN (PLN) (N = 12), nonproliferative lupus nephritis (NPLN) (N = 5), AIN (N = 6), CAN (N = 4), and normal kidneys (N = 3) were studied. FGF, FGFR-1, and FSP-1 were localized by immunohistochemistry, and intensity scored on a 0 to 3+ scale. Double staining with CD68 and separate immunohistochemical staining for CD4 and CD8 with serial sections analysis were done to identify if T lymphocytes or macrophages showed staining for FGF-1 and FGFR-1 or FSP-1.ResultsIn normal kidneys, FGF-1 was expressed in mesangial cells (0.67 ± 0.58), glomerular endothelial (0.67 ± 0.58), visceral, and parietal epithelial cells (1.67 ± 0.58). FGFR-1 showed a similar pattern of staining but also was expressed in tubular epithelium, and arterial endothelium and smooth muscle. Expression of FGF-1 was increased over normal in glomerular parenchymal cells only in CAN in podocytes (2.30 ± 0.58 vs. 3.00 ± 0.00) (P < 0.05) and parietal epithelial cells (1.67 ± 0.58 vs. 2.25 ± 0.50) (P < 0.05). Infiltrating glomerular and interstitial inflammatory cells in diseased glomeruli also expressed FGF-1 and FGFR-1. Tubular cells expressed slightly increased FGFR-1 in renal diseases vs. normal, whereas tubules remained negative for FGF-1 in diseased kidneys. FSP-1 expression was prominent in the interstitium in all kidneys with interstitial inflammation, and most prominent in CAN. Interstitial FSP-1+ cells were consistent with a myofibroblast-type morphology, and did not stain with CD-68. FSP-1 expression was closely associated with inflammatory cells expressing FGF-1 and FGFR-1. FSP-1 also showed positivity within crescents and occasional podocytes in PLN.ConclusionThe expression of FGF-1 and FGFR-1 in infiltrating lymphocytes and macrophages, and of FGFR-1 in tubules, is supportive, but does not prove causality, of the possibility that FGF-1 might have both autocrine and paracrine functions in renal inflammation. However, the initial stimulus for renal inflammation, whether immune complex, hypersensitivity or rejection, did not alter expression patterns of FGF-1 or its receptor. The colocalization of inflammatory infiltrates with interstitial fibrosis supports the possibility of a contribution of FGF-1 for chemotaxis and associated fibrosis, further supported by interstitial FSP-1 expression closely associated with these inflammatory cells expressing FGF-1 and FGFR-1

    Earthworms Use Odor Cues to Locate and Feed on Microorganisms in Soil

    Get PDF
    Earthworms are key components of temperate soil ecosystems but key aspects of their ecology remain unexamined. Here we elucidate the role of olfactory cues in earthworm attraction to food sources and document specific chemical cues that attract Eisenia fetida to the soil fungi Geotrichum candidum. Fungi and other microorganisms are major sources of volatile emissions in soil ecosystems as well as primary food sources for earthworms, suggesting the likelihood that earthworms might profitably use olfactory cues to guide foraging behavior. Moreover, previous studies have documented earthworm movement toward microbial food sources. But, the specific olfactory cues responsible for earthworm attraction have not previously been identified. Using olfactometer assays combined with chemical analyses (GC-MS), we documented the attraction of E. fetida individuals to filtrate derived from G. candidum colonies and to two individual compounds tested in isolation: ethyl pentanoate and ethyl hexanoate. Attraction at a distance was observed when barriers prevented the worms from reaching the target stimuli, confirming the role of volatile cues. These findings enhance our understanding of the mechanisms underlying key trophic interactions in soil ecosystems and have potential implications for the extraction and collection of earthworms in vermiculture and other applied activities

    Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos

    Get PDF
    The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2

    Direction reconstruction performance for IceCube-Gen2 Radio

    Get PDF
    The IceCube-Gen2 facility will extend the energy range of IceCube to ultra-high energies. The key component to detect neutrinos with energies above 10 PeV is a large array of in-ice radio detectors. In previous work, direction reconstruction algorithms using the forward-folding technique have been developed for both shallow (≲20 m) and deep in-ice detectors, and have also been successfully used to reconstruct cosmic rays with ARIANNA. Here, we focus on the reconstruction algorithm for the deep in-ice detector, which was recently introduced in the context of the Radio Neutrino Observatory in Greenland (RNO-G)
    corecore