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Over the last several years there has been a renewed interest
in basic cellular mechanisms of immunologic renal injury. '[his
renaissance has broadened and challenged our traditional views
of what constitutes a critical mechanism of renal damage by
assigning cell—mediated effector processes their proper place
alongside those of immune deposits and kidney—specific anti-
bodies. This new awareness of cellular mechanisms has also
stimulated research into the cell—mediated regulatory circuits
controlling both antibody and T cell effector events and, with
the enormous growth in immunogenetics and molecular biol-
ogy, now provides new opportunities for understanding the
basis of disease susceptibility at a molecular level [11. With the
current capability to develop monoclonal cell lines and T cell
hybridomas, the availability of genetic recombinant rodent
species, as well as antibodies to a wide assortment of cell
phenotypic and histocompatibility gene products, a whole new
area of immunosemiotics has evolved within the field of basic
immunology. Immunosemiotics is the study of interactive sig-
nals that modulate the response of immune cells, and is con-
cerned with issues involving cell receptor—ligand analyses,
soluble factor characterizations, and the genetic rules of
cell—mediated communication which govern self and non-self
recognition 121. It is now increasingly possible to apply this
body of working knowledge to problems in renal immunology.
For the purposes of this current discussion, it is our intention to
review the basic premise of genetic restriction, the routine
methods of cellular immunology, and some general strategies
for using I cell—mediated immunity to answer questions rele-
vant to renal immunopathology.

Genetic restriction of 'I' lymphocytes

Of the many testable gene products those of the major
histocompatibility complex (MHC) have been most convinc-
ingly demonstrated to have a role in the genetic restriction of
immune responses by T lymphocytes [3]. 'l'he MHC, among
other things, codes for both Class I and Class II molecules [4,
51. These determinants are well represented on the surface of
most lymphocytes, and at a structural level they consist of two
chains with a transmembrane tail piece.
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It has become apparent over the past decade that most
helper/inducer or cytotoxic T cells do not directly bind antigen
[3, 6—91, unlike suppressor T cells [10, 11] and B lymphocytes
[12]. Instead, helper and effector cells recognize nominal anti-
gen only when it is presented in the context of a particular gene
product from the MHC 16, 9]. This is most readily envisioned by
thinking of the T cell receptor as having either one combining
site which recognizes a complex between nominal antigen and
MHC molecule, or having distinctive dual specificities, one for
nominal antigen and one for the MHC [7, 8, 13]. Such phenom-
ena were initially revealed in studies which showed that T cells
educated to antigen in the presence of syngeneic MHC deter-
minants were ineffective in responding to the same antigen in an
allogeneic format [14—161. A requirement for functional homol-
ogy between MHC molecules of the responding T cell and the
MHC of the antigen—presenting cell becomes a true genetic
restriction when it is consistent for all polymorphisms at a given
locus of interest. With exceptions, many helper/inducer T cells
are restricted by MHC Class II molecules [3], while cytotoxic T
cells are typically restricted by Class I determinants [9]. 1 cell
receptor restrictions are also seemingly facilitated by as-
sociative—recognition molecules that modulate low avidity
cell—cell interactions [17, 18]. Class II interactions can be
facilitated by cell—surface L3'1'4 determinants in mice and Leu
3/T4 determinants in humans; Class I interactions can be
modulated by Lyt-2 determinants in mice and Leu 2/T8 deter-
minants in man [17]. While critical genetic restrictions involve
MHC interactions, there are also other gene loci with potential
restrictive effects. These loci have been best defined in mice
where recombinant events can be mapped with some precision,
and include Igh-V [19], IgT-C [20]. and I-J regions [21]. These
latter restriction sites cannot replace the implicit requirements
for MHC gene products, but probably act in a complementary
or co-interactional manner.

Methods

Experimental questions of cellular immunity in renal disease
often require the implementation of many research techniques.
These methods have evolved from the field of basic immunol-
ogy and, for the most part, are easily adaptable to an analysis of
the nephritogenic immune response.
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Cell preparation

The lymphoid system may be divided into primary lymphoid
organs (the bone marrow, bursa—equivalent, and thymus) where
lymphocyte maturation and education occurs, and secondary
organs (spleen and lymph nodes) where antigen-presentation
generally initiates an immune response. Many of these latter
lymphocytes also circulate with distinct homing patterns 1221.

The lymphoid system contains B cells which function in the
humoral immune response and T cells which are responsible for
cell—mediated immunity. Distinct T cell subsets serve as in-
ducer or helper cells, suppressor cells, or effector cells for
cytotoxicity, delayed-type hypersensitivity, or cutaneous sen-
sitivity. In addition to these cells, the lymphoid system also
contains dendritic cells and macrophages, which present anti-
gen as well as natural killer cells. Natural killer cells are
pre-programmed to directly lyse selected target cells [231.
These large granular lymphocytes are not T cells, B cells or
macrophages, but they can express a receptor for the Fe portion
of IgG. Their lineage is not fully established.

Very often a specific cell population needs to be isolated to
ask a relevant question about a selected immune response. The
spleen and lymph nodes are easily retrieved from sacrificed
animals and are the usual source of functionally mature
lymphoid cells. About two thirds of splenic lymphocytes are B
cells whereas about two thirds of lymphocytes in peripheral
nodes are T cells, depending on the strain [24], To harvest these
cells, the lymphoid organ is minced, gently teased apart, or
pushed through a wire mesh screen. Viability and cell counting
is then determined by trypan blue dye exclusion. Counting
should be completed within three minutes of adding the dye and
the media should not contain protein. Peripheral blood can be
enriched for lymphocytes with Ficoll—hypaque gradients [25].

Positive and negative cell selection

Harvested lymphocytes can be separated into subpopulations
with polyclonal or monoclonal antibodies to discriminating
cell—surface determinants. The characterization of these deter-
minants in man [26—28], mice [17, 29—33], and rats [34] has been
reviewed elsewhere. The separation of functionally distinct
subpopulations can be accomplished by means of positive
selection in which cells of appropriate phenotype are enriched,
or by negative selection in which selected populations are
depleted by antibody and complement.

Negative selection in vitro can often be performed as a
one—step procedure (adding the antibody and complement at
the same time) with many monoclonal antibodies, whereas
depletions with polyclonal antisera are usually done in two—
steps [35, 36]. The antibody has to be complement—fixing and
the source of complement is critically important. The optimal
dilution of antibody and complement per cell number must be
independently established and validated by viable cell counts of
anticipated remaining live cells or by fluorescent labelling
studies, If large numbers of cells are processed this way it is
often useful to add a little DNAase (10 to 15 jig/mI) to obviate
clumping. In vivo cell depletions are also possible with com-
plement—fixing antibodies [37, 38], although 1gM antibodies do
not penetrate peripheral lymphoid organs very well and anti-
antibody reactions develop quickly.

Positive selection for enrichment of macrophages can be
performed by incubations on culture dishes at 37°C [39]. Mac-
rophages can be removed from the dishes by temperature shift,
EI)TA, or lidocaine. Lymphocyte populations can be separated
into T and B cell components with nylon wool columns at 37°C
[40]. More recently it has also become feasible to separate large
number of lymphocytes into T and B cells, or into T cell
subpopulations using antibody—coated panning dishes [41, 42].
This is particularly useful when a cell population needs to be
enriched for definition, or if the discriminating antibodies are
not complement—fixing. Polystyrene petri dishes can be pre-
treated with affinity—purified antibody of defined specificity, and
after a brief incubation, the non-adherent cells can he removed.
'The remaining adherent cells are released by temperature shift
and pipetting, although if the antibody is of a too high affinity,
the cells cannot be dislodged. This problem can be largely
avoided by using optimal concentrations of affinity—purified
anti-antibody to coat the dishes and pre-incubating the cells
with the cell—surface antibody of interest before adding the cell
mixture to the panning dish. This indirect method will usually
allow cells to release after the non-adherent population has
been gently washed away. The efficiency of separation must be
established in each laboratory at defined temperatures fiir a
given cell number relative to exposed surface area coated with
optimal antibody. Finally, it is also possible to perform accurate
cell separations on a fluorescence—activated cell sorter [43].
Such separations can be useful for cell cloning and enrichment,
although the efficiency is poor and impractical when large cell
numbers are needed.

Long term culture of 1' lymphocytes
Characterization of the complex biochemical and cellular

interactions that occur in the immune system is often exceed-
ingly difficult using in vivo systems. Fortunately, over the last
ten years, investigators have developed techniques for cloning
or immortalizing '1' cells in vitro such that their biochemical
properties can be more easily evaluated. Crucial to continuous
T cell growth in culture was the discovery of T cell growth
factor, or IL-2, from the supernatants of lectin—stimulated
lymphocytes [44]. 1L-2 enabled the first immortalized growth of
a cytotoxic T cell line 145] and is now employed routinely in
many culture systems.

IL-2 can be prepared by culturing mouse or rat splenocytes in
media containing mitogen and then using the supernatant di-
rectly as 10 to 25% of fresh T cell culture media. The IL-2 can
be further purified by vacuum dialysis, gel filtration, ion ex-
change chromatography, and isoelectric focusing [46]. While
IL-2 production by non-transformed cells is relatively low,
there are human leukemia [471 and mouse lymphoma [48] cell
lines that produce 1,000 to 10,000 times the IL-2 of non-
transformed lines. Even these lines, however, still require Con
A or PHA for stimulation which can contaminate T cell growth
media and act as a non-specific mitogen. Mitogen can be largely
removed as an issue by pulsing the splcnocytes for two hr,
washing it away, and letting the cells complete a culture interval
ot48 h [49]. There also is a gibbon cell line, MLA-l44, available
which spontaneously secretes large amounts of IL-2, thereby
obviating the need to remove mitogenic contaminants [50]. To
alleviate concerns of unknown factors contained in superna-
tants, one can utilize commercially available recombinant IL-2
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[51]. At some time during the use of a particular type of 1L-2, it
is prudent to bioassay activity by measuring thymidine incor-
poration of the IL-2 dependent lines CTLL [52] or HT2 [531.

There are two general methods for cloning T cells, soft agar
and limiting dilution, each of which has relative strengths and
weaknesses. The soft agar technique involves suspending re-
cently (24 hr) stimulated T cells at various concentrations in
0.5% agar with subsequent layering of this suspension over
another layer of several million syngeneic irradiated feeder
splenocytes. After a few days in culture at 37°C, colonies cin be
found in the semi-solid agar and picked with a drawn—out
pasteur pipette and expanded in successfully larger culture
dishes [54, 55]. The technique offers some security that clones
come from monoclonal colonies. Limiting dilution performed in
microtiter plates, on the other hand, offers a simpler system to
assess clonotypic heterogeneity, but the monoclonality of lines
so produced is really more of a statistical assumption than the
physical evidence suggested by the soft agar technique.

Limiting dilution for cloning of alloreactive cells has been
done as follows [56—59]: T cells from a previous mixed—lym-
phocyte reaction are stimulated with excess allogeneic, irradi-
ated feeders for one to two days, and then plated at 20, 10, Sand
1 cells/well with one million fresh allogeneic feeders in 0.2 ml
microtiter plates with IL-2. A week later, wells positive for
growth are expanded into 2 ml wells with fresh feeders in IL-2.
Subsequent subcloning is done at 0.3 cells/well, and after
several such procedures, monoclonality is assumed. This tech-
nique has been used to generate helper/inducer and cytotoxic T
cells. When one tests for proliferation or cytotoxicity, assays
should he done in the presence and absence of IL-2, as some
clones may not proliferate specifically in its absence.

Often one is interested in nominal antigen—reactive T cells
which can also be cloned from animal lymphoid organs [60] or
human blood [61]. Nominal or synthetic antigen is adjuvant is
injected into the donor, and after a week or so, lymphoic1 cells
are harvested and passed over a nylon wool column to remove
B cells and monocytes. The non-adherent T cells are cultured at
I x l06/cc with equal numbers of fresh irradiated syngcneic
feeders, and antigen at optimal dilution, After one or two
culture periods, IL-2 is introduced into the system [60, 62]. This
technique has been used to generate cell lines which can
passively transfer experimental allergic encephalomyelitis in
rats [59] and mice [63], and also to generate a helper/inducer cell
which is capable of inducing anti-TBM nephritis in susceptible
strains of mice [64]. It is possible to test these cells in vitro for
proliferation to antigen and for functional effect as well as for
fine specificity and genetic restriction. Suppressor cell clones
can also he generated, although it often requires selective
removal of other classes of immune T cells or enrichment of the
suppressor lymphocyte, and a sensitive assay for suppression
[65—68]. An important methodological variable may be the dose
of antigen used to define a suprcssivc event [691.

Maintenance of T cell clones in long—term culture requires
continual rcstimulation, co-culture with feeders, and careful
monitoring of culture conditions. If one wishes to purify helper
or suppressor factors from these cultures, it is frequently
difficult to grow enough clones to yield the quantities needed.
Accordingly, following the protocols used for somatic fusion of
antibody—secreting cells with mycloma cells [701, investigators
developed methods for immortalizing T cells by fusing specific

immune T cells with T cell lymphomas [71, 72]. Generally, one
requires a l' lymphoma line with a metabolic defect such that
unfused cells will not grow in a defined selection medium. The
viability and growth phase of the starting cell populations, the
source of polyethylene glycol, and the length of the mixture
reaction are all critically important.

With T cell hybridoma technology, a variety of helper [73, 74]
and suppressor factors [75—76] have been purified for analysis.
The hybridomas can produce ascites in appropriate F, hybrids
or nude rodents. This material provides a rich source of
lymphokincs which can he used in passive transfer studies
where the cells cannot. Over time, fusion lines can loose
chromosomes [53, 57, 77] and stop growing so that repetitive
subcloning is usually mandatory.

Preparation of helper and suppressor T cells and their
soluble factors

The helper T cell repertoire facilitates and augments complex
antigen—reactive immune responses. These cells induce and
direct the differentiation of cytotoxic lymphocytes, T cell—medi-
ated delayed—type hypersensitivity, and B cell maturation. In
fact, the effector cell response to most complex antigens re-
quires inducer T cells to provide cognate or polyclonal help.
Cognate help is MHC-rcstrictcd [64, 78, 791 and mediated by a
specific group of helper/inducer cells which form an interactive
relationship with other differentiating T and B cells [80, 811.

Helper cells capable of releasing soluble helper factors can be
induced in several ways. Such cells may be harvested from the
splccns of lethally irradiated mice who receive of thymocytc
cell—transfers and arc immunized with antigen [82]. Such cells,
when restimulated in vitro, release an antigen—specific helper
factor [83]: and cell extracts are also a source of this soluble
material [84]. Alternatively, T cells of antigen—primed mice in
vitro have been shown to produce helper factors [85, 86], and
their established functional effects can be carried as cell lines
[65—87, 88]. T helper/inducer cells in murine interstitial nephri-
tis, as long—term cultures, are capable of inducing effector T
cells in vitro which subsequently produce disease on adoptive
transfer [64]. Such helper cells also produce a soluble factor
which can mediate this inductive effect (unpublished observa-
tion). Finally, helper cell hybridomas have been generated as a
source of soluble factors, although the amounts generated seem
to be less than those produced by suppressor cell fusions [89,
90].

In the last several years, it has also become apparent that
suppressor mechanisms play a major role in the modulation of
both humoral and cell—mediated immune responses [I, 91, 92].
Such suppression may be due to the formation of anti-idiotypic
antibodies or suppressor cell networks. Suppressor cell net-
works typically involve several sets of sequentially activated,
suppressor T cells which have complementary specificities,
operate under genetic restrictions, and secrete soluble suppres-
sor factors which mediate complex interactive functions [1, 6,
12, 76, 93—100]. Suppressor networks have been demonstrated
in a variety of renal diseases, either as part of the natural
evolution of a nephritogenic imniunc response [101, 1091, or as
investigator—induced therapeutic interventions [110—114]. Sup-
pressor cells may he induced in vivo with ligand—couplcd
lymphocytes [92, 115]. high dose antigen—priming without adju-
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vant [116], or with antigen in incomplete Freund's adjuvant
[112, 1131. Suppressor cells can also be induced in in vitro
culture systems [117]. Once induced, these cells can be har-
vested and isolated in several ways. Many suppressor T cells
are antigen—binding and will do so without antigen processing
and presentation, using antigen—coated plates [10, lii. Alterna-
tively, cells may be incubated with antibodies to cell—surface
determinants (such as ui-i, aLyt-2, aL3T4, u'I'4, or uT8) and
selected by cell sorter or indirect panning. Once selected, like
helper cells, they can be characterized for phenotype and
genetic restriction, and can now be grown as continuous cell
lines [65—69], or as hybridornas after fusion [96. 1181. It is also
evident that suppressor T cells secrete soluble suppressor
factor [90, 119, 1201. Different methods of factor preparation
have led to some conflicting results regarding their properties
[121, 122]. To some degree these discrepancies may he ex-
plained by suhpopulation contamination 1123], and by the fact
that different suppressor factors may operate at different points
in the effector response [124, 1251. Like the helper cell factors,
suppressor molecules can also be subjected to a variety of
bioimmunochemical analyses [90, 118—121].

In vitio correlates of T cell—mediated immunity

As lymphocyte activation and proliferation represent the sine
qua non of the antigen—reactive immune response, in vitro
assays of proliferation are frequently employed in the study of
immune—mediated disease. Lymphocyte proliferation is typi-
cally a cell interaction event. Accessory cells (macrophages and
dendritic cells) activate antigen—specific 'F helper/inducer lym-
phocytes through their capacity to process and present antigen
in association with class 11 MHC gene products [126—1281 and to
secrete IL-l [1291. IL-I subsequently facilitates iI,-2 production
by inducer T cells [130—1321 which, in turn, stimulates the
proliferation of other antigen—reactive T cells [l33—137]. Either
IL-i or IL-2 can replace the requirement for accessory cells in
some culture systems [1381. In addition to its facilitative effects
on antigen—specific 'I cells, IL-2 also enhances natural killer cell
activity [139]. Other T cell lymphokines stimulate B cell differ-
entiation [140, 141] or macrophage expression of MHC antigens
[142—143]. This latter effect may amplify ongoing proliferative
events.

How in vitro measurements of T cell proliferation correlate
with in vivo expression of immune responsiveness must be
independently established for each system. When stable T cell
lines are used for analysis, it is somewhat easier to analyze
proliferation against measured function 164]. They are, how-
ever, not the same, nor is either an easily substituted measure
for the other [144], The most convenient and widely used assay
for lymphocyte proliferation in response to antigen, mitogen, or
allogeneic cells is the measured incorporation of tritiated thy-
midine (3HTdR) [145—148].

Problems in interpretation can be minimized if results are
regarded simply as rough approximations of changes in DNA
synthesis [149]. Collected data can he expressed as raw counts:
a delta cpm, or as a stimulation index or ratio of stimulated
versus resting cells. Appropriate controls for proliferation as-
says consist of cells pulsed with 3HTdR in the absence of
antigen as well as the use of "irrelevant" antigens to determine
the specificity of the measured response. Proliferation assays
can also be used to address the genetic restriction of lympho-

cyte activation as well as the role of associative—recognition
molecules [641. In the case of long term T cell lines, these
events can be correlated with the emergence of predictable
function.

T-B cells interactions can also be analyzed in vitro by
measuring hemolytic plaques which are the result of a small
amount of lytic antibody secreted in the vicinity of a single B
lymphocyte [1501. While there are a variety of methods for
plaquing, typically immune lymphocytes and ligand—coated red
blood cells are mixed in a thin layer of agar. After incubation,
the addition of complement permits the lysis of 1gM anti-
body—coated indicator cells (direct plaques), or the difference
between complement alone and anti-IgG, IgA, or IgE and
complement (indirect plaques) when secretion by other classes
of antibody are of interest [151]. 1gM plaques can also he
inhibited by the presence of 2-ME or I)'FT, making the detec-
tion of IgG plaques less cumbersome [152]. A variety of haptens
and proteins can be linked to indicator red blood cells using
covalent—coupling reactions [153]. Red blood cells can also be
coated with protein A to measure polyclonal antibody re-
sponses to B cell mitogens or the presence of anti-idiotypic
antibodies in antigen—activated systems [154]. These reverse—
hemolytic plaque assays are very powerful tools in the analysis
of the B cell repertoire. Other investigators have also used
radioimmunoassay to detect secreted antibody with good effect
[155—158]. These B cell assays have been employed in the
evaluation of 'i-B cell collaborations using a variety of strate-
gies 1159, 160], and have been recently used to study the B cell
response in renal disease [103, 106, 1581. Admixing helper/in-
ducer T cells and B cells with putative suppressor T cells also
allows for the analysis of interactive regulatory events [66, 103,
1611.

The ability of immune lymphocytes to specifically destroy
target cells was first demonstrated by Govaerts in 1960 with
thoracic duct lymphocytes from dogs receiving renal allografts
which were cytotoxic to kidney cells of the allograft donor
[1621. In the decade following this discovery, a variety of
methods were developed to assay cytotoxicity. These included
microscopic detection of damage to target cell monolayers,
quantitative counting of viable target cells following incubation
with effector cells, and inhibition of target cell colony formation
by effector cells [1631. These techniques have been largely
superceded in the last fifteen years by niethods utilizing the
release of isotopes from labeled target cells. Chromium-Si
(which is not reutilized) has emerged as the most sensitive and
reliable radioactive marker for assessing cytotoxicity. The
standard chromium release assay was described by Brunner et
al in 1968 [1641 and has undergone multiple minor modifications
in subsequent years [165—167]. in typical 51Cr release assays,
viable effector lymphoid cells, obtained from immune blood or
peripheral lymphoid organs, are admixed with 51Cr labeled
target cells in varying cffcctor/target ratios. Following three to
six hours of incubation at 37°C, the resultant supernatants are
counted for released Cr. With high rates of spontaneous
isotope release this assay loses sensitivity and reproducibility.
Although modifications of the standard 5tCr release assay have
been shown to correlate well with the functional ability of
cytotoxic cells to inhibit target cell clone formation [168], this
assay is probably inadequate to address questions of relative
numbers of cytotoxic cells in different populations, as it does
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not distinguish quantity from lytic efficiency [1691. Such issues
are more appropriately addressed using limiting dilution detec-
tion of cytotoxic T cell precursors [1701. The role of more
recently described colormctric cytotoxicity assays remains to
be defined [171].

Proper interpretation of cytotoxicity assays depends on the
inclusion of appropriate experimental control groups and char-
acterization of the cffcctor and target cell populations. Effector
lymphocytes from non-immunized animals establishes the
background cytotoxicity for a given strain; the specificity of
cytotoxicity is established with target cells expressing irrele-
vant antigen. Specificity, as well as the presence of different
populations of cytotoxic cells, can also be established by cold
target inhibition [172].

Ascribing cytotoxic effector function to a particular subpop-
ulation of immune lymphocytes requires homogeneous cell
populations. In recent years, the issue of contaminating mac-
rophages and polymorphonuclear leukocytes in lymphoid pop-
ulations has been largely obviated by the use of monoclonal
antibodies, cell separation procedures, and T cell clones. The
visibility of target cell associated Class I MHC molecules is
another variable which may differ markedly between in vivo
and in vitro settings. In studying the role of cytotoxic T cells in
immune—mediated kidney disease, choice of target cells is
critical if one is to ascribe pathophysiologic relevance to the
cytotoxic event. Studies in interstitial nephritis have utilized
both renal cell monolaycrs and tubular antigen—pulsed macro-
phages as targets for cytotoxic '1 cells 1173, 174]. Other inves-
tigators have demonstrated cytotoxic T cells in biopsy [175] or
nephrectomy specimens of rejecting human renal allografts
[176, 177]. Modified 51Cr release assays have also been utilized
to test for natural killer cell activity [178—181] and antibody—
dependent cell—mediated cytotoxicity by K cells [169, 1821.

Neutrophils, monocytes, and macrophages accumulate at
sites of tissue injury in large part because of their ability to
display chemotaxis (directed locomotion) in response to chem-
ical substances present in such areas. In general these chemoat-
tractants interact with high affinity receptors on the surface of
responding Ieukocytcs [183—1911. The affinity of this chcmoat-
tractant—rcceptor interaction is not invariable and is affected by
the chemoattractants themselves [192, 193] and other second
messengers [194]. How the signal of an occupied receptor is
translated into enhanced, directed cell locomotion is unclear. A
number of biochemical events have been shown to accompany
receptor binding, including alteration in membrane potential
[195], mono- and divalent cation fluxes [196, 197], changes in
cAMP and cOMP [198], and increased turnover of protein
methyl esters [199]. Pharmacologic agents which inhibit meth-
yltransferase reactions [200], phospholipase A2 action [201], or
the lipoxygcnase pathway [188, 2t)2] all serve to inhibit chemo-
taxis; addition of oxidized metabolites of arachidonic acid, in
the latter example, will restore the chemotactic response. It is
important to note that these chcmoattractants, in addition to
stimulating chemotaxis, appear to activate secretion of
lysosomal enzymes and toxic 02 metabolites by phagocytic
cells [203, 2041. Thus, they may act in vivo as mediators
stimulating potential nonspecific mechanisms of tissue damage.

There are two general techniques used to measure leukocyte
chcmotaxis. Less frequently used, because of economic and
time constraints, is the microscopic visual observation of leu-

kocytcs migrating toward a chcmotactic gradient source [2051.
Ideally, such assays use time lapse cinematography to record
cell migration. A modification of this assay, which is simpler
and less expensive, is the recording of the orientation of cells in
response to a chcmotactic gradient [206]. Although these assays
bear the advantage of direct observation of cell behavior, they
are impractical. The more widely used assay, initially described
by Boydcn [2071, utilizes chambers with two compartments
separated by a filter [205, 208, 209]. One is a cellulose ester filter
in which the chemoattractant gradient is formed. Cells migrate
through this matrix both as function of their inherent locomo-
tive properties and in response to the formed chemoattractant
gradient. These assays can be utilized to test unknown fluids for
chcmoattractant activity, or cell populations for their ability to
migrate in response to known chemoattractants. In either case,
appropriate controls (to estimate the amount of unstimulated
cell migration, and/or to document chemotaxis to defined agents
when testing sera for activity), must be performed. Lastly,
many clinical laboratories use an agarose assay to quantitate
chemotaxis [210]. Cells in suspension arc placed between wells
containing control buffer or chemoattractant. Migration of cells
through the agarose is measured in each direction. This assay is
relatively simple, inexpensive, and often provides enough pre-
cision for clinical studies.

As with all in vitro assays, resulting chemotaxis cannot be
easily extrapolated to in vivo conditions. For example, while
the presence of a defined chcmoattractant gradient across the
kidney in experimental aTBM disease producing interstitial
nephritis may be a relevant mechanism by which macrophagcs
accumulate in this lesion [211], it does not rule out other
explanations. Similarly, observed chemotactic abnormalities in
patients with glomerulonephritis have unclear pathophysiologic
relevance, as results arc highly dependent on assay conditions
[212].

In viva correlates ofT cell—mediated immanity

While highly refined in vitro systems are analytically useful in
the evaluation of cell—mediated processes, the physiologic or
pathophysiologic corroboration of these systems generally re-
quire analogous in vivo measurements, The in vivo reaction
classically involving effector T cells is that of delayed—type
hypersensitivity (DTH) to foreign proteins or contact sensitivity
to chemical haptens. Landsteiner and Chase first demonstrated
that contact sensitivity could be elicited in guinea pig recipients
of immune cells upon challenge with the sensitizing agent [213].
Subsequent studies extended similar observations to the mouse
[214, 215] and humans [216, 217], followed by investigations
demonstrating that the effect was mediated by T lymphocytes
[218, 219]. DTH reactions are mediated by antigen—specific T
cells which induce a collection of neutrophils and monocytes at
the site of intradcrmal challenge. Local tissue destruction is
facilitated by a variety of soluble factors producing erythema
and induration [220, 221]. The initial reaction in guinea pigs and
humans usually occurs 24 hours after challenge, and classically
begins with the appearance of ncutrophits followed by a pre-
dominance of macrophages and occasional epithelial granulo-
mas [216, 222—224]. In mice and rats the neutrophils tend to
persist with the mononuclear presence [222]. The specific
characteristics of the histology, however, are probably less
important than the fact that the resulting induration is T
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cell—mediated and antigen—specific. In humans, such effector T
cells seem to be T4 [216], while in mice they can he either Lyt
l L3T4, or Lyt 2 lymphocytes [218, 219, 225]. DTH
reactions are particularly useful in experimental studies be-
cause immune cells can be characterized or admixed and
transferred into naive recipients to evaluate T cell—effector
function [225], or the mechanism of immune regulation [92. 101,
102, 114, 115].

Several specific considerations apply to the measurement of
delayed—type hypersensitivity. The strength of the primary
immunization and the length of time from exposure to antigen
are important. These must be kinetically analyzed to optimize
the test system. The strength of the challenging agent will also
vary [2231, but microgram quantities are often necessary in
protein systems. The vehicle containing the antigen must he
non-toxic. Although quantification of the DTH reaction can be
performed by measuring the diameter of skin induration [2221,
increase in ear thickness [220], incorporation of 3HTdR at a
local site [2261, and thigh or footpad swelling [225, 227, 228], it
is the last of these, particularly in mice and rats, that has
become especially popular. This may relate to the relative ease
with which it can be learned [222]. Variability in measured
results can be minimized by injecting all recipients at the same
anatomic landmark without drawing blood. Quantitation of the
reaction 24 to 48 hours after challenge can be performed with
calipers [229], plethysmography [230, 2311, or with a spring—
loaded engineers micrometer 1225, 2321. In our hands the latter
instrument gives quite reproducible results. When footpad
measurements are made, the investigator should be comfort-
ably seated with the foot held under slight tension and perpen-
dicular to the micrometer. It is critically important that the
reader be blinded to the experimental groups.

The hypothesis that sensitized cells mediate an in vivo
immune reaction can be formally tested in experimental animals
using adoptive transfer protocols [213, 2331. These transfers
must be made in syngeneic recipients to avoid acute rejection.
Transfers into semi-syngeneic recipients are possible when the
immunologic test is applied within a few days and when the
possibility of acute rejection as an explanation for a negative
result has been ruled out by demonstrating that immune cells
from F1 hybrids can transfer the immunologic effect into one of
the parents. This latter strategy has been routinely employed in
the study of MHC restrictions of DTH reactions [225]. Since
most pathologic lesions take several days to develop, semi-
syngeneic transfers are not really analytically useful. Appropri-
ate experimental controls for adoptive transfer protocols would
include the use of irrelevant immune cells, cells depleted of
effector lymphocytes, and normal cells incubated with and
washed of antigen to eliminate the possibility of antigen car-
ryover. In addition to intravenous transfer, sensitized cells can
be applied to a renal subcapsular location [234]. This approach
allows an evaluation of the presence or absence of immune
effector function in the transferred population, and circumvents
issues of systemic migration or counter-regulatory events that
might otherwise interfere with the transfer of effect [64, 225].
The acute results of such a transfer protocol can he defined
kinetically by serial sacrifice for pathologic evaluation.

Bone marrow chimeras can also be constructed to explore the
role of genetic factors in the pathogenesis of cell—mediated
lesions [2351. Chimeric animals are prepared by lethally—irradi-

ating recipients and reconstituting them within several hours
with T cell—depleted bone marrow of cells of dissimilar origin.
After 8 to 10 weeks the recipient is typically reconstituted with
lymphoid cells of donor origin. This can be confirmed with
antisera to allotypic markers of interest. Chimeras in which the
recipient has, in addition to being lethally irradiated, also been
previously thymectomized and/or reconstituted with donor
thymus permits an evaluation of the thymic effect on subse-
quent cell—mediated events. The chimeric approach has been
successfully used in evaluating the determinants of MHC re-
striction [236, 237], the nature of self—tolerance [237, 2391, and
the mechanism controlling disease expression in experimental
renal lesions [240].

In situ evaluation of cell subpopulations in kidney lesions can
be performed by immunofluorescence with antibodies to se-
lected cell—surface determinants. Appropriate negative controls
must be consistently used, and validation by eluting cells from
tissue is valuable [2411, but laborious. Ringed cell fluorescence
can be confirmed with ethidium bromide staining of nuclei
[242], and new anti-quenchers can be added to the glycerol
coating of sections to prevent fluorescent fading [243, 244]. The
optimal dilution of first and second antibodies can be standard-
ized using cells from normal lymphoid organs. Properly done,
these immunofluorescent analyses can provide useful, but static
information regarding the constituents of local pathologic infil-
trates [241, 245—247].

Experimental strategies
In working with cell—mediated T lymphocyte systems, either

in vivo or in vitro, one is always challenged by the conditions
which validate scientific reality. In many cases, the response to
this challenge can only be an approximation of continuing
refinement, and there are several considerations that currently
should be kept in mind. A number of immune processes, as an
example, depend on genetically—defined rules of cell interaction
which regrettably limit many human studies, but are less of a
problem with inbred experimental animals. The exact date of
onset for many human renal diseases is often unknown, so that
comparative differences among immunologic measurements
requires a kinetic analysis for time—controlled interpretations.
Cells displaced from their normal anatomic compartment and
used in culture, or depleted of selected subpopulations, may
also only be partially able to carry out their functions when
placed in other environmental circumstances 1248]. Purifying
subpopulations of cells may furthermore reduce overall viabil-
ity, and the purification process itself may unwittingly eliminate
cells with high or very low affinity for particular antigens or
determinants such that one's experimental results may only
reflect a segment of the immune response that is of interest
[249]. All of these issues can impact on the interpretation of
collected data.

Identifying a relevant nephritogenic cell population requires
the meeting of several specific criteria, not unlike those which
would satisfy Koch's postulates. While regulatory and inducer
T cells do not necessarily need to he present in a kidney
infiltrate, it would be expected that directly mediating nephri-
togenic cells could be consistently isolated from local renal
lesions, that their phenotype and specificity could be obtained,
and that the adoptive transfer of such cells would reproduce the
lesion in naive animals. Some cells within renal lesions, like



270 IVei/son ci a!

Table 1. Nephritogenic immune response profile: T lymphocyte interactions

Induction pathways Immune regulation Effectnr cell events
1. Immune response genes I. Suppressor cell circuits I T cell—dependent antibody synthesis
2. Abrogation of tolerance a. Auto—regulation 2. Effector T cells
3. Immune activatiun b. Induced—regulation a. Cytotoxicity

a. Accessory cell presentation b. Delayed—type hypersensitivity
b. Helper cell—mediated differentiation c. Lymphokines/histnkines

of effector events 3. Macrophage events

neutrophils, macrophages, and natural killer cells, are typically
just collected components of second—order inflammatory
events. An immune cell, such as a T cell, has both specificity for
an antigen and immunologic memory. It is these latter cells
which will be the principle focus of the remaining discussion.

One of the largest problems in doing experiments with T cells
is the proper assignment of specificity controls. Specificity
controls can only be as good as the imagination of the investi-
gator and the biochemical precision with which the relevant
antigen has been defined. When the relevant determinants are
from renal tissue, the best specificity controls are renal tissue
minus the determinant, relevant determinants with minor mod-
ification, or perhaps, similar tissue from another parenehymal
organ from the same host. At a minimum, to he fair, they should
be moieties with which a cell population might have had some
potential exposure to but, in fact, have had no experience with.
Another troublesome area is the inference of T cell function
from cell—surface phenotype. While there are a few exceptions
to the rule, 1' cell phenotype generally only indicates that MHC
context within which T cells recognize antigen [171. Nothing
really meaningful can be said about function by knowing
phenotype, just as nothing about function can be construed
from simple measurements of T cell proliferation [144]. There
are many different immunologic techniques which can be used
to probe the role of T cell immunity in renal disease. The
general area of cellular immunity can be divided into three
arbitrary domains (See Table I).

Induction puthivays

Investigations in this area examine the origins of the
nephritogenie immune response. Whether the principle, local
effeetor mechanism is humoral or cell—mediated, both have a
beginning with antigen—recognition, overcoming tolerance, and
immune activation. For many immune responses the induction
pathway appears to he the primary level of immune response
gene effect reflecting disease susceptibility. There are several
genetic regions which are frequently involved in T cell recog-
nition of antigen. In the mouse they are the H-2, Igh-l, and
IgT-C regions [3, 19, 20]. It is equally likely, however, that a
nephritogenie immune response can map to additional genetic
loei for which no recombinant event has yet provided a measure
of distinction, and as such, are often referred to as non-MHC-
linked [250—252]. One can test for many of these possibilities by
using genetic recombinant or congenie mice and rats. Once the
lesion has been reproducibly established in an inbred rodent
species, then other strains can be selected which differ in the
MHC region (or subregion), at Tgh-l, IgT-C, or in the back-
ground of the susceptible strain. The ability to detect differ-
ences among selected recombinants, of course, assumes that

allelic variations exist within the species: that is, some strains
will get disease while others will not, otherwise no such
assessment can be made. If the nephritogenic immune response
is directed towards a renal parenehymal antigen, one can also
potentially map for its genetic location by using phenotypic
markers suggested by the characteristics of the strains which do
ordo not express the renal antigen of interest (such as albinism,
pink—eye, oraliver enzyme of established location) [253]. If the
F1 hybrid expresses the antigen, these mapping studies are
statistically more powerful when done as F1 haekcrosses to
non-susceptible parents rather than as F2 segregation studies.
In human experiments, genetic linkage is often established by
assigning association probabilities, relative risks, and etiologi-
cal fractions using statistical models [254].

Nude athymic rodents can also be used to determine if
disease activation is a T cell—dependent event, assuming that
the heterozygote littermates are disease—susceptible [255]. If
athymie rodents of a susceptible strain are not available, then
thymectomized, lethally irradiated, T cell—depleted bone mar-
row reconstituted rodents can be used several months after
preparation (B-cell mice or rats) [256]. Radiation—induced bone
marrow ehimeras (susceptible x non-susceptible) F —s non-
susceptible recipients, or vice versa) can also be used to
analyze the role of host—environment or thymus—origin on the
ability of T cells to respond to selected antigens [257—259]. The
actual measurement of T cell effect depends, to a certain
degree, on the nature of the response in the non-susceptible
host; that is, if no response to antigen is made, then a simple
proliferation assay can he used to measure antigen—recognition.
If only a distinctive qualitative difference in susceptibility exists
in the non-susceptible strain, then a functional assay (T cell help
for antibody production, or T cell cytotoxicity, or delayed type
hypersensitivity; vide infra) will be a necessary requirement.

When the nephritogenie immune response is directed towards
a renal alloantigen, it is likely that the susceptible host has had
to overcome normal tolerogenic mechanisms preventing spon-
taneous self—aggression [2601. Generally, for example, a sus-
ceptible host will not ordinarily make a meaningful immune
response to autologous antigens, unless the dose is unusually
large or the adjuvant unusually strong, while the host may
easily respond to the same nephritogenic determinant presented
in a heterologous format, To study the vagaries of tolerance,
and to maximize the likelihood of identifying an operative-
tolerogenie mechanism, the primary immunization should be
sufficient, but not so overwhelmingly strong as to make any
form of tolerance functionally inoperative [2611. While a variety
of tolerogenie mechanisms have been proposed or character-
ized, many of the functionally important ones seem to involve
the T cell repertoire [262]. They include, in the non-susceptible
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host, the failure of antigen to associate with MHC class II
alleles on antigen—presenting cells, an absence of T cells which
can respond to antigen, and the presence of active and specific
T cell suppression [262]. These issues can best he addressed by
using T cell lincs [2631, antigen—pulsed presenting cells [264], F,
hybrids or chimeras [258], or in the case of suppressor cell—
mediated elonal silence, by using low—dose irradiation [265],
antigen—suicide [266], or cyclophosphamide treatment to abro-
gate functional deletions [92, 101, 260]. Add—back adoptive
transfer experiments with selected subpopulations of cells can
then be employed to characterize and confirm the relevant cells
mediating the tolerogenic effect.

The induction process finally culminates in the development
of an immune effector repertoire. For most immune responses
to complex antigens, there are a series of cell interactions
involving T helper/inducer cells mediating the differentiation of
B cells, cytotoxic T cells, and delayed—type hypersensitivity
responses (infra vide); that is, T helper cells would not neces-
sarily be the direct mediator of a ncphritogenic effect. The
interactions leading to such an effect can, however, he analyzed
using in vitro cell culture—induction systems [64, 101, 267—269].
Requirements for a differentiating effect may vary, but gener-
ally include a source of T helper cells (often as a stable line or
clone), T and/or B cell growth factors, and a source of naive
effector precursor and antigen—presenting cells. The resulting
humoral or cell—mediated effector event can then be passively
or adoptively transferred to measure nephritogenie potential
[64]. Such assay systems can also be used to analyze the role of
lymphokines, soluble helper factors, genetic restrictions, and
mechanisms of phenotypie selection and acquisition of receptor
affinity. In vitro induction assays are particularly useful para-
digms for evaluating and characterizing the biochemical medi-
ators of immunologic differentiation. Helper cell factors from
cell lines or T cell hybridomas can he run over immunoaffinity
columns with specificities for the primary ligand, MHC subre-
gion determinants, and idiotypes, and the different fractions
collected can then he tested for inductive properties [90, 961.

Jnunuune regulation
Studies in the area of immune regulation can provide evi-

dence for the mechanisms which control or limit nephritogenic
immune responses as well as provide opportunities to modulate
the natural history of ongoing renal disease [11. Most regulatory
systems intrinsically utilize subpopulations of T cells which can
induce or effect suppression as well as provide eontrasuppres-
sion, or second level inhibition of suppression [91, 92]. 1hese
networks depend on complementary interactions between anti-
gen, idiotype, and antigen—presenting cells, are restricted by
gene products in the major histocompatibility complex, and
have been thoroughly reviewed elsewhere [1, 91, 92, 115]. A
regulatory process can theoretically influence the development
of immune—mediated renal disease in two general ways. First, a
pluri-potential component cell or network in a normal regula-
tory pathway can cease to operate or fail to develop such that
any number of autoreaetive immune responses would sponta-
neously arise to produce mediators of renal injury. Second, an
expected regulatory event in response to a nephritogenic anti-
gen could be delayed or fail to appear. Under these latter
conditions, the immune response cannot he terminated, and
what would be otherwise a self—limited event now becomes a

progressive form of renal injury. Regulatory networks can also
be divided into those which arc investigator or external-
ly—induced and those which naturally arise as self—limiting
events.

One experimental strategy that can he used to identify the
presence of a natural or ontologie suppressor cell effect is to
co-treat a susceptible recipient with low—dose irradiation, or
cyelophosphamide and immunize with: 1) a suhnephritogenic
dose of antigen; 2) a renal antigen which normally does not
produce disease in an autologous format [1011; or 3) a full—
strength antigen that produces worse disease when kinetically
compared to similar recipients who are not co-treated [102].
Using one of these constructed paradigms.,relevant naive 'F cell
subpopulations can then be added back to abrogate the height-
ened effect. Similar kinds of experiments could be performed
with nude, or B cell mice or rats reconstituted with a
nephritogenie effector mechanism [256, 27t)]. In mice with
spontaneous interstitial ncphritis, there is an attrition of tubular
antigen-specific suppressor T cells which can be restored by
adoptive transfer of lymphocytes from normal eongenic strains
[240]. In viral glomerulonephritis in weanling mice, there is a
failure in the development of suppressor T cells which can be
corrected by adoptive transfer protocols using adult infected
mice [271]. F1 hybrids from susceptible and non-susceptible
mice have also been used to illustrate the presence of a
regulatory network (T cell and anti-idiotypic) inoperative in the
autoimmune susceptible strain [105]. Suppressor or regulatory
mechanisms can also he analyzed using functional assays
measuring effector events like antibody formation [106, 107] or
effector T cell—mediated delayed—type hypersensitivity after
local passive transfer [64]. Such assays have been used to
evaluate the role of ligand—specific suppressor cells in mercuric
chloride glomerulonephritis [106, 107], lgA-nephropathy [1081,
Inpus mice [103, 109], Heymann nephritis 1104], and experimen-
tal interstitial nephritis [114].

In addition to the study of naturally—occurring suppressor
cells which appear as a self—limiting mechanism during the
course of renal disease, it is also feasible to employ exogenous,
or investigator—induced suppressor networks which are con-
structed as therapeutic probes to measure externally applied
regulatory effects. Generally, these experimental strategies arc
initiated by inducing antigen or idiotype—specific suppressor
cells in a naive syngcneic animal, and then adoptively transfer-
ring the donor cells either at the time of recipient immunization
or, more importantly, after the disease process has been initi-
ated. These cell—mediated suppressor networks typically in-
volve several sets of sequentially activated suppressor T cells
which have complementary specifleities. They often operate
under genetically—defined rules, have interactions with subpop-
ulations of antigen—presenting cells, and they usually secrete
soluble suppressor factors which mediate complex interactive
functions [91, 92]. To be of interest, such suppressor networks
must have an inhibitory effect on the renal disease in question.
It will not always be possible, however, to use disease as an end
point in all experiments attempting to characterize fine—
specificity or genetic restriction. This is most easily accom-
plished in short—term assays measuring relevant nephritogenie
effeetor events, like the inhibition of production of antibodies or
effcctor T cells 1106, 107, 114]. Such assays can be performed
by admixing before plaquing [65, 106], or by quantitating the
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effect of suppressor T cells, or their soluble suppressor factors,
on the development of antigen—specific delayed—type hypersen-
sitivity [64], or cytotoxicity [273, 2741. Characterization of
specificity, complementary idiotype, phenotype, and genetic
restriction are easily analyzed with such paradigms [92]. Sup-
pressor cells can bc induced with antigens in incomplete
Freund's adjuvant [112, 113, 275], by hyperimmunization with
T lymphoblasts 1110, 1111, or by using intravenously injected
ligand—coated lymphocytes [1141. With the latter method, it has
also been possible to directly induce auto-anti-idiotypic sup-
pressor cells in mice with active renal disease. Suppressor cells
established through such strategies may be purified by ligand—
panning (as suppressor cells seem to be able to directly bind
ligand), started in long—term culture as suppressor T cell lines
[65, 691, or fused with T cell lymphomas to make factor—secret-
ing hybrids [75, 76].

Effector cell events

The identification of relevant T cell—mediated or T cell—
dependent effector mechanisms is critical to the dissection of
many local nephritogenie events, If such processes can be
distilled to their functional essence they can also become useful
probes into the inductive and regulatory processes discussed
above. In nearly all experimental strategies putative nephri-
togenic T cells will have to be able to either adoptively transfer
the inflammatory reaction into naive recipients or, in the case of
T-B cell interactions, induce the production of nephritogenic
antibodies in culture which can then passively transfer the
lesion.

The adoptive transfer of immune effector T cells, while not
always necessary [275, 276], may be enhanced by prior in vitro
culture with antigen [63, 64, 2771 and, in the ease of T cell lines,
may require subsequent administration of exogenous IL-2, or
sub-lethal irradiation of the recipient to produce lesions. Such
manuevers to transfer disease in naive recipients are not an
invalid test of efficacy, as the naive host is not a conditioned,
nor necessarily a conducive environment for immunologic
effector cell expression. This may he particularly true when the
antigen is parenchymal self. Exogenous planted glomerular
antigen, on the other hand, seems to be easily recognized by
circulating immune lymphocytes [278, 279]. In the ease of the
kidney, it is technically possible to place immune reactive cells
under the capsule to assess direct nephritogenic effect [64, 225,
243], In some cases this may be facilitated by using soluble
antigen in the transfer vehicle. If effector '1' cells recognize their
antigenic epitopes in the context of MHC determinants, then
the expression of such determinants may also modulate the
efficacy and rapidity with which transferred cells localize within
the renal parenchyma. Non-specific activators of MHC class
antigens on somatic renal cells, like interferon, may be useful in
priming the naive recipients [280].

With the variety of antibodies to cell—surface determinants
that are presently available, it is now also feasible to phenotyp-
ieally characterize the inflammatory cells comprising a renal
lesion of interest [241, 245—247]. While such studies form an
initial data base of information, they, of themselves, do not
constitute a definitive statement of mechanism. Implying func-
tion from phenotype is inherently uncertain and many times
incorrect 1171 It is possible, however, to isolate infiltrating

cells, positively or negatively select suhpopulations of interest,
and apply them to assays for functional effect [64].

There are several functional assays which can be employed to
obtain useful quantitative results. In evaluating 'l'-B cell inter-
actions, there are plaquing assays for measuring B cell synthe-
sis of antibody to antigen or idiotype, or there are radioim-
munoassays which can directly measure synthesized antibody
of interest [150—161]. Effector 'F cell function can be analyzed
by in vitro cytotoxicity assays [173, 174, 281] if enough effector
cells are available, and if the relevant target antigen can be
covalently linked or expressed by a chromium—labelled cell that
has an acceptably low level of spontaneous release. In some
cases it may be appropriate to use labelled renal parenchymal
cells as a target [173]. lsolated immune T cell populations can
also be assessed for effector function in assays measuring
delayed—type hypersensitivity. Delayed—type hypersensitivity
reactions can best he utilized in adoptive transfer strategies
where immune cells are injected intravenously or locally into
the footpad [64, 225]. This latter method is particularly useful
when there are limited numbers of cells. The precision of the
measurement, and the clonal nature of these interactions are,
perhaps, best evaluated with cell lines where stability, manip-
ulability, and predictability are achieved with greater reliability.
Human studies are limited to measurements of T cell function
using assays of antibody synthesis or cytotoxicity [61, 155—158],
and the current ability to grow lymphocytes out of renal
biopsies holds promise for establishing useful human cell cul-
tures for immunologic analysis 11751. Lymphocyte culture
systems for both animals and humans also provide a ready
source of lymphokines for molecular and immunologic study
[83, 90, 121]. Cell lines or initial cultures can be fused with a
variety of lymphomas, and once stabilized, can often produce
substantial quantities of such factors [75, 76].

Finally, macrophages are a common cell type found in both
glomerular and interstitial nephritides. The presence of such
cells can be verified by antibodies to cell—surface determinants
[246] or by special stains [241] and, in histocompatible murine
systems, the origin of localizing macrophages can be tracked
with distinctive hone marrow cells from Chediak—Higashi mice
[282]. The generation and presence of renal—derived chemoat-
tractants can also be kinetically analyzed using arterial and
renal venous serum samples obtained across nephritic kidneys
[2111. The role of macrophages in hypercellular lesions are
verifiable by pretreatment protocols using anti-macrophage
serum [283, 284], with the effect of antibody Fe-piece on
macrophage elicitation can be analyzed with comparisons be-
tween intact immunoglobulin and F(ah')2 fractions 12851.

Summary
This overview has examined some of the current experimen-

tal options available for the study of cellular immunity in the
immunopathogenesis of renal disease. T cell immunity, where it
has been examined, seems to have a particularly pivotal role in
orchestrating and regulating functional patterns of renal injury.
The use of the research methods presented here for the study of
cell—mediated interactional events in kidney disease, however,
has lagged behind similar efforts in other organ systems. We
hope, therefore, this report will serve to stimulate and
strengthen further interest in the cell biology of the nephrito-
genie immune response.
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