2,597 research outputs found

    Link-space formalism for network analysis

    Full text link
    We introduce the link-space formalism for analyzing network models with degree-degree correlations. The formalism is based on a statistical description of the fraction of links l_{i,j} connecting nodes of degrees i and j. To demonstrate its use, we apply the framework to some pedagogical network models, namely, random-attachment, Barabasi-Albert preferential attachment and the classical Erdos and Renyi random graph. For these three models the link-space matrix can be solved analytically. We apply the formalism to a simple one-parameter growing network model whose numerical solution exemplifies the effect of degree-degree correlations for the resulting degree distribution. We also employ the formalism to derive the degree distributions of two very simple network decay models, more specifically, that of random link deletion and random node deletion. The formalism allows detailed analysis of the correlations within networks and we also employ it to derive the form of a perfectly non-assortative network for arbitrary degree distribution.Comment: This updated version has been expanded to include a number of new results. 19 pages, 11 figures. Minor Typos correcte

    Multiplex ligation-dependent probe amplification (MLPA) analysis is an effective tool for the detection of novel intragenic PLA2G6 mutations: Implications for molecular diagnosis

    Get PDF
    Phospholipase associated neurodegeneration (PLAN) comprises a heterogeneous group of autosomal recessive neurological disorders caused by mutations in the PLA2G6 gene. Direct gene sequencing detects 85% mutations in infantile neuroaxonal dystrophy. We report the novel use of multiplex ligation-dependent probe amplification (MLPA) analysis to detect novel PLA2G6 duplications and deletions. The identification of such copy number variants (CNVs) expands the PLAN mutation spectrum and may account for up to 12.5% of PLA2G6 mutations. MLPA should thus be employed to detect CNVs of PLA2G6 in patients who show clinical features of PLAN but in whom both disease-causing mutations cannot be identified on routine sequencin

    Diagonally Neighbour Transitive Codes and Frequency Permutation Arrays

    Get PDF
    Constant composition codes have been proposed as suitable coding schemes to solve the narrow band and impulse noise problems associated with powerline communication. In particular, a certain class of constant composition codes called frequency permutation arrays have been suggested as ideal, in some sense, for these purposes. In this paper we characterise a family of neighbour transitive codes in Hamming graphs in which frequency permutation arrays play a central rode. We also classify all the permutation codes generated by groups in this family

    A “Learning Revolution”? Investigating Pedagogic Practices around Interactive Whiteboards in British Primary Classrooms

    Get PDF
    Interactive whiteboards have been rapidly introduced into all primary schools under UK Government initiatives. These large, touch-sensitive screens, which control a computer connected to a digital projector, seem to be the first type of educational technology particularly suited for whole-class teaching and learning. Strong claims are made for their value by manufacturers and policy makers, but there has been little research on how, if at all, they influence established pedagogic practices, communicative processes and educational goals. This study has been designed to examine this issue, using observations in primary (elementary) school classrooms. It is funded by the UK Economic and Social Research Council and builds on the authors’ previous research on ICT in educational dialogues and collaborative activities

    Single molecule imaging reveals the concerted release of myosin from regulated thin filaments

    Get PDF
    Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process

    Augmenting forearm crutches with wireless sensors for lower limb rehabilitation

    No full text
    Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
    corecore