130 research outputs found

    Schools, communities and social capital: building blocks in the 'Big Society' (Research associate full report)

    Get PDF
    "This study looked at how effective schools engage with their communities. Its aim was to identify key mechanisms that promoted community engagement. It also sought to determine the impact this had on the amount and nature of social capital available to pupils, parents and the wider community. Effective schools were found to generate significant amounts of social capital within their institutions as demonstrated by the degree of trust, reciprocity, civic engagement and social cohesion. Pupil voice was a powerful mechanism in developing a sense of control and self-efficacy. Recently created posts such as family workers, therapists and social work placements extended much of this impact into the family. Schools that went further to promote social capital in the neighbourhood were those with a more aspirational vision that went beyond simply engaging the community to aid school improvement. They viewed community empowerment as key to the success of their pupils and families within the wider social context. They encouraged community leadership and decision-making, often through informal learning approaches, and truly became ‘hubs of the community’, facilitating community development and promoting community cohesion. The findings suggest that a more reciprocal view is needed of the relationship between school and community and that schools could play a central role in creating the ‘Big Society’.

    The faint end of the galaxy luminosity function

    Full text link
    We present and discuss optical measurements of the faint end of the galaxy luminosity function down to M_R = -10 in five different local environments of varying galaxy density and morphological content. The environments we studied, in order of decreasing galaxy density, are the Virgo Cluster, the NGC 1407 Group, the Coma I Group, the Leo Group and the NGC 1023 Group. Our results come from a deep wide-angle survey with the NAOJ Subaru 8 m Telescope on Mauna Kea and are sensitive down to very faint surface-brightness levels. Galaxies were identified as group or cluster members on the basis of their surface brightness and morphology. The faintest galaxies in our sample have R ~ 22.5. There were thousands of fainter galaxies but we cannot distinguish cluster members from background galaxies at these faint limits so do not attempt to determine a luminosity function fainter than M_R = -10. In all cases, there are far fewer dwarfs than the numbers of low mass halos anticipated by cold dark matter theory. The mean logarithmic slope of the luminosity function between M_R = -18 and M_R = -10 is alpha ~ -1.2, far shallower than the cold dark matter mass function slope of alpha ~ -1.8. We would therefore need to be missing about 90 per cent of the dwarfs at the faint end of our sample in all the environments we study to achieve consistency with CDM theory.Comment: 23 pages, 26 figs, MNRAS in pres

    Precision Irrigation Guide for Center Pivots

    Get PDF
    This factsheet discusses the different variable rate irrigation (VRI) options for center pivots, when they might reduce water use and energy, produce higher crop yields, and when it might be unreasonable to expect these kinds of benefits

    The Local Food Environment and Fruit and Vegetable Intake: A Geographically Weighted Regression Approach in the ORiEL Study.

    Get PDF
    Studies that explore associations between the local food environment and diet routinely use global regression models, which assume that relationships are invariant across space, yet such stationarity assumptions have been little tested. We used global and geographically weighted regression models to explore associations between the residential food environment and fruit and vegetable intake. Analyses were performed in 4 boroughs of London, United Kingdom, using data collected between April 2012 and July 2012 from 969 adults in the Olympic Regeneration in East London Study. Exposures were assessed both as absolute densities of healthy and unhealthy outlets, taken separately, and as a relative measure (proportion of total outlets classified as healthy). Overall, local models performed better than global models (lower Akaike information criterion). Locally estimated coefficients varied across space, regardless of the type of exposure measure, although changes of sign were observed only when absolute measures were used. Despite findings from global models showing significant associations between the relative measure and fruit and vegetable intake (β = 0.022; P < 0.01) only, geographically weighted regression models using absolute measures outperformed models using relative measures. This study suggests that greater attention should be given to nonstationary relationships between the food environment and diet. It further challenges the idea that a single measure of exposure, whether relative or absolute, can reflect the many ways the food environment may shape health behaviors

    Thermoregulation is not impaired in breast cancer survivors during moderate-intensity exercise performed in warm and hot environments

    Get PDF
    This study aimed to assess how female breast cancer survivors (BCS) respond physiologically, hematologically, and perceptually to exercise under heat stress compared to females with no history of breast cancer (CON). Twenty‐one females (9 BCS and 12 CON [age; 54 ± 7 years, stature; 167 ± 6 cm, body mass; 68.1 ± 7.62 kg, and body fat; 30.9 ± 3.8%]) completed a warm (25℃, 50% relative humidity, RH) and hot (35℃, 50%RH) trial in a repeated‐measures crossover design. Trials consisted of 30 min of rest, 30 min of walking at 4 metabolic equivalents, and a 6‐minute walk test (6MWT). Physiological measurements (core temperature (T (re)), skin temperature (T (skin)), heart rate (HR), and sweat analysis) and perceptual rating scales (ratings of perceived exertion, thermal sensation [whole body and localized], and thermal comfort) were taken at 5‐ and 10‐min intervals throughout, respectively. Venous blood samples were taken before and after to assess; IL‐6, IL‐10, CRP, IFN‐γ, and TGF‐β(1). All physiological markers were higher during the 35 versus 25℃ trial; T (re) (~0.25℃, p = 0.002), T (skin) (~3.8℃, p  0.05). Both groups covered a greater 6MWT distance in 25 versus 35℃ (by ~200 m; p = 0.003). Nevertheless, the control group covered more distance than BCS, regardless of environmental temperature (by ~400 m, p = 0.03). Thermoregulation was not disadvantaged in BCS compared to controls during moderate‐intensity exercise under heat stress. However, self‐paced exercise performance was reduced for BCS regardless of environmental temperature

    Monitoring buried infrastructure deformation using acoustic emissions

    Get PDF
    Deformation of soil bodies and buried infrastructure elements (i.e. soil-structure systems) generates acoustic emission (AE). Detecting this AE by coupling sensors to buried structural elements can provide information on asset condition and early warning of accelerating deformation behaviour. A novel approach for deformation monitoring of buried steel infrastructure (e.g. pipes and pile foundations) using AE is described in the paper. The monitoring concept employs pre-existing, or newly built, buried steel infrastructure assets as waveguides. The propagation of AE through example pipes acting as waveguides has been modelled computationally using the program Disperse. A parametric study has been used to investigate the influence of key variables such as burial depth, surrounding soil type, internal environment, pipe diameter, wall thickness, frequency and mode type upon AE propagation and attenuation. Understanding the propagation and attenuation of AE is of fundamental importance for development of a monitoring strategy and specifically to determine the spacing of sensors deployed along infrastructure elements. The generation of AE due to soil-structure interaction mechanisms has been investigated using a programme of large direct shear tests of soil against steel plates under a range of conditions (e.g. soil type, plate surface conditions, stress level, strain rate). New, fundamental understanding of AE generation and propagation in buried infrastructure is enabling a framework to be developed for interpreting asset condition from AE measurements. The paper will introduce the approach developed, describe the parametric study of AE propagation and attenuation presenting example results, and show typical AE behaviour for soil-structure interaction obtained in the large shear tests. The implications for design of a monitoring framework will be discussed

    An acoustic emission landslide early warning system for communities in low-income and middle-income countries

    Get PDF
    Early warning systems for slope instability are needed to alert users of accelerating slope deformation behaviour, enable evacuation of vulnerable people, and conduct timely repair and maintenance of critical infrastructure. Communities exposed to landslide risk in low- and middle-income countries seldom currently instrument and monitor slopes to provide a warning of instability because existing techniques are complex and prohibitively expensive. Research and field trials have demonstrated conclusively that acoustic emission (AE) monitoring can be an effective approach to detect accelerating slope movements and to subsequently communicate warnings to users. The objective of this study was to develop and assess a simple, robust, low-cost AE monitoring system to warn of incipient landslides, which can be widely deployed and operated by communities globally to help protect vulnerable people. This paper describes a novel AE measurement sensor that has been designed and developed with the cost constrained to a few hundred dollars (US). Results are presented from physical model experiments that demonstrate performance of the AE system in measuring accelerating deformation behaviour, with quantifiable relationships between AE and displacement rates. Exceedance of a pre-determined trigger level of AE can be used to communicate an alarm to users in order to alert them of a slope failure. Use of this EWS approach by communities worldwide would reduce the number of fatalities caused by landslides

    Acoustic emission monitoring in geotechnical element tests

    Get PDF
    Acoustic emission (AE) is high-frequency noise (>10kHz) generated by deforming materials. AE is widely used in many industries for non-destructive testing and evaluation; however, it is seldom used in geotechnical engineering, despite evidence of the benefits, because AE generated by particulate materials is highly complex and difficult to measure and interpret. This paper demonstrates that innovative AE instrumentation and measurement can enhance insights into geotechnical element tests. Results from a programme of triaxial compression and shear, large direct-shear and large permeameter experiments show that AE can be used to characterise mechanical and hydromechanical behaviour of soils and soil-structure interaction, including: dilative shear behaviour; transitions from pre- to post-peak shear strength; changes in strain rates; isotropic compression; unload-reload cycles of compression and shear; and seepage-induced internal instability phenomena

    Role of MALDI-MSI in combination with 3D tissue models for early stage efficacy and safety testing of drugs and toxicants

    Get PDF
    Introduction: Three-dimensional (3D) cell cultures have become increasingly important materials to investigate biological processes and drug efficacy and toxicity. The ability of 3D cultures to mimic the physiology of primary tissues and organs in the human body enables further insight into cellular behavior and is hence highly desirable in early-stage drug development. Analyzing the spatial distribution of drug compounds and endogenous molecules provides an insight into the efficacy of a drug whilst simultaneously giving information on biological responses. Areas Covered: In this review we will examine the main 3D cell culture systems employed and applications, which describe their integration with mass spectrometry imaging (MSI). Expert Opinion: MSI is a powerful technique that can map a vast range of molecules simultaneously in tissues without the addition of labels that can provide insights into the efficacy and safety of a new drug. The combination of MSI and 3D cell cultures has emerged as a promising tool in early-stage drug analysis. However, the most common administration route for pharmaceutical drugs is via oral delivery. The use of MSI in combination with models of the GI tract is an area that has been little explored to date, the reasons for this are discussed
    corecore