83 research outputs found

    Does the Redundant Signals Effect Occur with Categorical Signals?

    Get PDF
    The redundant signals effect (RSE) refers to a decrease in response time (RT) when multiple signals are present compared to when one signal is present. The RSE is widespread when responses are made to specific signals; for example, a participant who is asked to respond to the letter “N” will respond more quickly to two “Ns” than to one “N.” The current research was conducted to determine whether or not the RSE generalizes to categorical signals. In Experiment 1, participants pressed a button when they saw any number on a computer screen. Each trial contained two stimuli subtending 1º visual angle and placed 3º above and below the center of the screen. Both stimuli were letters on 50% of trials (no-signal condition), one stimulus was a number on 25% of trials (single-signal condition), and both stimuli were numbers on 25% of trials (redundant-signal condition). RT was faster in the redundant-signal condition (461 ms) than in the single-signal condition (509 ms, p \u3c .001), indicating that the RSE occurred. However, Experiment 1 contained noise (a letter) in the single-signal condition; when the noise letter was removed in Experiment 2, the RSE was nonsignificant (redundant-signal RT = 446, single-signal RT = 458 ms, p = .167). Nevertheless, the trend in Experiment 2 was towards a RSE, and the fast RTs may indicate a ceiling effect. For now, the evidence in favor of a categorical RSE is mixed; further research is expected to provide clarity on the issue

    Redundant Signals in the Triple Conjunction Effect

    Get PDF
    The triple conjunction effect (TCE) is characterized by faster response times (RT) when a target is defined by three features than when it is defined by three features. Similarly, the redundant signals effect (RSE) is characterized by faster RTs when a display contains multiple features that are each sufficient to define a target. When a single display element contains multiple target features in separate feature dimensions, the RSE may be attributable to feature coactivation, in which information from multiple features combines to reach a response threshold. Because triple conjunctions contain an extra distinguishing feature, they are comparable to the RSE, and feature coactivation may therefore be expected. In the current study, participants searched for the presence of a target letter in 4 blocks of conjunction search trials (2 of color and orientation, and 2 of form and orientation) and 2 blocks of triple conjunction search trials (color, form, and orientation). Each trial contained 4 or 8 letters subtending 2° by 2° on an invisible circle 8° from the center of the display. Trials were terminated if participants moved their eyes more than 2.75° from the center or did not respond within 4 seconds. A similar second experiment was conducted with distractor homogeneity equated across conjunction and triple conjunction searches. Results indicated that the TCE occurred in both experiments; RTs were ~206 ms faster in triple conjunction than conjunction search. The Townsend Bound, a theoretical minimum for triple conjunction RT under the assumption that no coactivation occurred, was violated at several quantiles (5-16 of 18 quantiles, depending on experiment, set size, and target) when RT was averaged across participants. Additionally, most participants individually violated the Townsend Bound in at least some conditions, providing further evidence for coactivation. The results suggest that the TCE is at least partially due to coactivation of target-relevant features

    Cutting through the clutter: Searching for targets in evolving complex scenes

    Get PDF
    We evaluated the use of visual clutter as a surrogate measure of set size effects in visual search by comparing the effects of subjective clutter (determined by independent raters) and objective clutter (as quantified by edge count and feature congestion) using evolving scenes, ones that varied incrementally in clutter while maintaining their semantic continuity. Observers searched for a target building in rural, suburban, and urban city scenes created using the game SimCity. Stimuli were 30 screenshots obtained for each scene type as the city evolved over time. Reaction times and search guidance (measured by scan path ratio) were fastest/strongest for sparsely cluttered rural scenes, slower/weaker for more cluttered suburban scenes, and slowest/weakest for highly cluttered urban scenes. Subjective within-city clutter estimates also increased as each city matured and correlated highly with RT and search guidance. However, multiple regression modeling revealed that adding objective estimates failed to better predict search performance over the subjective estimates alone. This suggests that within-city clutter may not be explained exclusively by low-level feature congestion; conceptual congestion (e.g., the number of different types of buildings in a scene), part of the subjective clutter measure, may also be important in determining the effects of clutter on search

    Training and Transfer of Training in Rapid Visual Search for Camouflaged Targets

    Get PDF
    Previous examinations of search under camouflage conditions have reported that performance improves with training and that training can engender near perfect transfer to similar, but novel camouflage-type displays [1]. What remains unclear, however, are the cognitive mechanisms underlying these training improvements and transfer benefits. On the one hand, improvements and transfer benefits might be associated with higher-level overt strategy shifts, such as through the restriction of eye movements to target-likely (background) display regions. On the other hand, improvements and benefits might be related to the tuning of lower-level perceptual processes, such as figure-ground segregation. To decouple these competing possibilities we had one group of participants train on camouflage search displays and a control group train on non-camouflage displays. Critically, search displays were rapidly presented, precluding eye movements. Before and following training, all participants completed transfer sessions in which they searched novel displays. We found that search performance on camouflage displays improved with training. Furthermore, participants who trained on camouflage displays suffered no performance costs when searching novel displays following training. Our findings suggest that training to break camouflage is related to the tuning of perceptual mechanisms and not strategic shifts in overt attention

    Falls Risk and Simulated Driving Performance in Older Adults

    Get PDF
    Declines in executive function and dual-task performance have been related to falls in older adults, and recent research suggests that older adults at risk for falls also show impairments on real-world tasks, such as crossing a street. The present study examined whether falls risk was associated with driving performance in a high-fidelity simulator. Participants were classified as high or low falls risk using the Physiological Profile Assessment and completed a number of challenging simulated driving assessments in which they responded quickly to unexpected events. High falls risk drivers had slower response times (~2.1 seconds) to unexpected events compared to low falls risk drivers (~1.7 seconds). Furthermore, when asked to perform a concurrent cognitive task while driving, high falls risk drivers showed greater costs to secondary task performance than did low falls risk drivers, and low falls risk older adults also outperformed high falls risk older adults on a computer-based measure of dual-task performance. Our results suggest that attentional differences between high and low falls risk older adults extend to simulated driving performance

    The psychological interaction of spam email features

    Get PDF
    This study explored distinct perceptual and decisional contributions to spam email mental construal. Participants classified spam emails according to pairings of three stimulus features – presence or absence of awkward prose, abnormal message structure, and implausible premise. We examined dimensional interactions within general recognition theory (GRT; a multidimensional extension of signal detection theory). Classification accuracy was highest for categories containing either two non-normal dimension levels (e.g. awkward prose and implausible premise) or two normal dimension levels (e.g. normal prose and plausible premise). Modelling indicated both perceptual and decisional contributions to classification responding. In most cases, perceptual discriminability was higher along one dimension when stimuli contained a non-normal level of the paired dimension (e.g. prose discriminability was higher with abnormal structure). Similarly, decision criteria along one dimension were biased in favour of the non-normal response when stimuli contained a non-normal level of the paired dimension. Potential applications for training are discussed

    Blur detection is unaffected by cognitive load

    Get PDF
    Blur detection is affected by retinal eccentricity, but is it also affected by attentional resources? Research showing effects of selective attention on acuity and contrast sensitivity suggests that allocating attention should increase blur detection. However, research showing that blur affects selection of saccade targets suggests that blur detection may be pre-attentive. To investigate this question, we carried out experiments in which viewers detected blur in real-world scenes under varying levels of cognitive load manipulated by the N-back task. We used adaptive threshold estimation to measure blur detection thresholds at 0°, 3°, 6°, and 9° eccentricity. Participants carried out blur detection as a single task, a single task with to-be-ignored letters, or an N-back task with four levels of cognitive load (0, 1, 2, or 3-back). In Experiment 1, blur was presented gaze-contingently for occasional single eye fixations while participants viewed scenes in preparation for an easy picture recognition memory task, and the N-back stimuli were presented auditorily. The results for three participants showed a large effect of retinal eccentricity on blur thresholds, significant effects of N-back level on N-back performance, scene recognition memory, and gaze dispersion, but no effect of N-back level on blur thresholds. In Experiment 2, we replicated Experiment 1 but presented the images tachistoscopically for 200 ms (half with, half without blur), to determine whether gaze-contingent blur presentation in Experiment 1 had produced attentional capture by blur onset during a fixation, thus eliminating any effect of cognitive load on blur detection. The results with three new participants replicated those of Experiment 1, indicating that the use of gaze-contingent blur presentation could not explain the lack of effect of cognitive load on blur detection. Thus, apparently blur detection in real-world scene images is unaffected by attentional resources, as manipulated by the cognitive load produced by the N-back task

    Hangover

    No full text

    The autobiography of Mark Twain

    No full text
    xxv, 413 p. ; 19 cm
    corecore