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Cutting through the clutter: Searching for targets
in evolving complex scenes

Department of Psychology, University of Central Florida,
Orlando, FL, USAMark B. Neider

Department of Psychology, Stony Brook University, USAGregory J. Zelinsky

We evaluated the use of visual clutter as a surrogate measure of set size effects in visual search by comparing the effects of
subjective clutter (determined by independent raters) and objective clutter (as quantified by edge count and feature
congestion) using “evolving” scenes, ones that varied incrementally in clutter while maintaining their semantic continuity.
Observers searched for a target building in rural, suburban, and urban city scenes created using the game SimCity. Stimuli
were 30 screenshots obtained for each scene type as the city evolved over time. Reaction times and search guidance
(measured by scan path ratio) were fastest/strongest for sparsely cluttered rural scenes, slower/weaker for more cluttered
suburban scenes, and slowest/weakest for highly cluttered urban scenes. Subjective within-city clutter estimates also
increased as each city matured and correlated highly with RT and search guidance. However, multiple regression modeling
revealed that adding objective estimates failed to better predict search performance over the subjective estimates alone.
This suggests that within-city clutter may not be explained exclusively by low-level feature congestion; conceptual
congestion (e.g., the number of different types of buildings in a scene), part of the subjective clutter measure, may also be
important in determining the effects of clutter on search.

Keywords: visual search, visual clutter, eye movements, feature congestion, edge detection

Citation: Neider, M. B., & Zelinsky, G. J. (2011). Cutting through the clutter: Searching for targets in evolving complex
scenes. Journal of Vision, 11(14):7, 1–16, http://www.journalofvision.org/content/11/14/7, doi:10.1167/11.14.7.

Introduction

Set size effects, the relationship between the number of
objects in a display and the time needed to find a target,
have long served as the gold standard for characterizing
the efficiency of visual search (Wolfe, 1998b). Under-
standing this relationship is important, as it tells us how
search is affected by load. From the many studies using
this manipulation, we have learned that search efficiency
often degrades roughly linearly as non-target objects are
added to a displayVthe increased load arising from these
added distractors makes it harder to find the search target.
However, we also learned that this linearly increasing set
size effect applies mainly to objects consisting of multiple
features; when a target has a feature that is not shared with
the distractors, its detection is often immediate regardless
of the set sizeVa phenomenon commonly referred to
as pop out. This observation led to early characterizations
of search load effects in terms of dichotomies based on
feature diversity and overlap, the most common being a
relationship between parallel and serial search slopes to
singleton and conjunction search tasks, respectively
(Treisman & Gelade, 1980; see also Duncan & Humphreys,
1989, for a related distinction between homogeneous and
heterogeneous displays). More recently, these dichotomy-
based accounts have been subsumed under the broader
framework of signal detection theory (Eckstein, 1998;

Palmer, Verghese, & Pavel, 2000; Verghese, 2001; but see
Rosenholtz, 2001); as featurally diverse distractors are
added to a display, noise is introduced that makes it more
likely for non-target signals to be mistaken for the target,
thereby degrading search efficiency.
In an effort to quantify search load effects in terms of

distinct objects and features, studies using a set size
manipulation have relied almost exclusively on relatively
impoverished stimuliVarrays of simple visual patterns
presented against a homogenous background (see Wolfe,
1998a, for a review). The advantages of using these
stimuli are obvious; if the target is a red vertical bar and
the distractors are red horizontal and green vertical bars,
then the feature complexity and overlap between these
objects can be precisely specified. Moreover, the use of
simple and easily segregated stimuli makes quantifying
search load trivial; to determine the set size, one needs only
to count the number of objects.
Recent decades, however, have seen a growing push

to use more ecologically valid stimuli in all corners of
behavioral research, and visual search has been at the
forefront of this ongoing, and indeed accelerating, trend.
There are now many search studies that have used real-
world targets displayed against a simple background (e.g.,
Biederman, Blickle, Teitelbaum, Klatsky, & Mezzanotte,
1988; Castelhano, Pollatsek, & Cave, 2008; Newell,
Brown, & Findlay, 2004; Schmidt & Zelinsky, 2009; Yang
& Zelinsky, 2009), simple objects displayed against a
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complex background (e.g., Brockmole & Henderson,
2006b; Wolfe, 1994b; Wolfe, Oliva, Horowitz, Butcher,
& Bompas, 2002), real-world objects displayed against a
complex background (e.g., Bravo & Farid, 2004; Neider,
Boot, & Kramer, 2010; Neider & Zelinsky, 2006b), and of
course realistic targets embedded in simple (e.g., Henderson,
Weeks, & Hollingworth, 1999; Neider & Zelinsky, 2006a,
2010; Võ & Henderson, 2010; Zelinsky, 1999, 2001;
Zelinsky, Rao, Hayhoe, & Ballard, 1997) or fully realistic
scenes (e.g., Eckstein, Drescher, & Shimozaki, 2006;
Foulsham & Underwood, 2007; Malcolm & Henderson,
2009; Oliva, Wolfe, & Arsenio, 2004; Zelinsky & Schmidt,
2009; see Henderson, 2003, 2007; Tatler, 2009, for
reviews). Paralleling this barrage of behavioral studies
has been an equally strong development in search theory,
with many computational models of search now being
able to accommodate realistic objects and scenes (e.g.,
Ehinger, Hidalgo-Sotelo, Torralba, & Oliva, 2009; Hwang,
Higgins, & Pomplun, 2009; Itti & Koch, 2000; Kanan,
Tong, Zhang, & Cottrell, 2009; Navalpakkam & Itti, 2005;
Parkhurst, Law, & Niebur, 2002; Pomplun, 2006, 2007;
Rao, Zelinsky, Hayhoe, & Ballard, 2002; Torralba, Oliva,
Castelhano, & Henderson, 2006; Zelinsky, 2008).
This refocusing of the search literature from simple to

realistic stimuli, however, has come with a price; the set
size effect, our most accepted method of quantifying the
effect of load on search, has become essentially mean-
ingless. The problem lies in not knowing what counts as
an “object” in the context of a real-world scene (Neider &
Zelinsky, 2008, 2010; Rosenholtz, Li, Mansfield, & Jin,
2005; Wolfe, Võ, Evans, & Greene, 2011). Whereas the
number of T and L letters in a standard search task is
countable and yields a definitive answer, the number of
distractors accompanying a coffee mug target in a typical
kitchen scene is arguably unknowable. Although plates
and other cups on the counter might constitute clear
distractors, what about the toaster or the oven or every tile
on the wall or pattern on the floor? Depending on how one
chooses to define an object, the inclusion of these
relatively non-object-like patterns in the count, or the
parts of more accepted objects (each button on the blender
or knob on the oven), might easily cause the estimated
number of objects in a realistic scene to swell into the
hundreds. Such arbitrariness corrupts an independent
measure. Given that an “object” is the unit in a set size
manipulation, as the meaningfulness of this unit breaks
down, so does the hope of defining a set size.
As our hypothetical coffee mug search task exemplifies,

all patterns in a realistic context are not likely to be treated
equally by perception. It has long been known that some
of these patterns are perceptually organized into “figures”
or objects, with the rest delegated to the perceptual
background (Wertheimer, 1923; for a more recent dis-
cussion and a review, see Craft, Schutz, Niebur, & von der
Heydt, 2007; Driver, Davis, Russell, Turatto, & Freeman,
2001). This object/background division profoundly affects
search. We explicitly demonstrated this in previous work

by creating camouflage backgrounds consisting of tiled
pieces of the target object, essentially pitting the back-
ground against the object distractors in the display (Neider
& Zelinsky, 2006b; see also Boot, Neider, & Kramer,
2009; Neider et al., 2010; Wolfe et al., 2002). Even
though the distractors (other realistic objects) were clearly
less featurally similar to the target than the background,
they nevertheless attracted the vast majority of fixations
during search. The fact that the search process segregated
objects from background, even under conditions of
camouflage, led us to speculate that a similar segregation
may also characterize search through fully realistic scenes
(Neider & Zelinsky, 2010). If there is any hope of defining
a set size effect for such scenes, it is imperative that this
process be understood, as it would be the objects
segregated from the background that would impose the
load and impact search efficiency.
Even if this segregation process can be deciphered and

the objects in a scene counted, there is no guarantee that
these objects would comprise a stable setVwhat may be
considered an object in one search context or scene may
not be considered an object in another. In Neider and
Zelinsky (2008), we showed that the definition of an
object, and therefore the scene’s relevant set size, might
change with the number of countable distractors in a
scene. Using scenes varying in their number of tree
distractors, we found that at low set sizes the objects
indeed seemed to be the trees, resulting in standard set
size effects. However, at higher set sizes, which allowed
for the trees to become grouped into clumps, observers
redefined the scene’s objects to be the open field regions
emerging between the clumps of trees. As distractors were
added to a scene, the observer changed the definition of
what counted as an object from “tree” to “field.” When we
plotted search time as a function of the actual number of
tree distractors, this object redefinition produced a
negative set size effect, a pattern that is rarely found in
studies using simple stimuli but one that might actually be
common in the case of realistic scenes. All of this casts
doubt on whether common conceptions of a set size effect
can be meaningfully extended into the real world. If an
object is not a static entity, but rather a perceptual
construct that can change at the discretion of the observer,
how then is it possible to count the number of objects
appearing in a scene? Determining a set size for realistic
scenes might therefore not be just a difficult problem, it
might be an ill-defined problem.
If standard conceptions of set size cannot be applied to

realistic search tasks, how then is it possible to quantify
effects of load on visual search in these tasks? One
intriguing suggestion by Rosenholtz et al. (Rosenholtz
et al., 2005; Rosenholtz, Li, & Nakano, 2007) is to use
visual clutter as a surrogate measure of set size in realistic
scenes. Even if the objects in a scene are uncountable, these
objects are composed of features, and the “congestion”
among these features can be quantified. The expectation
is that feature congestion should increase with the number
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of objects, regardless of how they may be defined, and
therefore predict search efficiency. Rather than quantifying
search efficiency in terms of a RT � set size function,
changes in search efficiency with increasing load might
be quantified in terms of a RT � clutter function in the
context of scenes.
How should feature congestion be quantified? Recent

work by Henderson, Chanceaux, and Smith (2009)
evaluated several image-based measures of visual clutter
in the context of a search task, including edge density,
sub-band entropy, and feature congestion. Feature con-
gestion was quantified using the Feature Congestion
model (Rosenholtz et al., 2005, 2007), which computes
local variability in color, orientation, and luminance
contrast over the whole of an image to derive a measure
of visual clutter for that image (also see Bravo & Farid,
2008, for a related method of quantifying feature clutter).
Although all of these clutter measures were found to
correlate reasonably well with search RTs, perhaps surpris-
ing was the finding that one of the simpler measures, edge
density, predicted search performance about as well as
the rest. As the number of edges in a scene increased, so
did search RTs, perhaps due to a relationship between
the proximity of neighboring edges and one’s ability to
segment a scene into objects (Bravo & Farid, 2004, 2006).
In addition to their computational simplicity and incon-
trovertible inclusion in the pantheon of early visual features,
edges have also been shown to correlate highly with gaze
fixations in both simple displays (Mackworth & Morandi,
1967) and real-world scenes (Baddeley & Tatler, 2006), a
relationship of particular relevance for the present study.
Despite this flurry of recent research relating clutter to

search performance, there are two aspects of this relation-
ship that deserve further consideration. First, while it has
been shown that search RTs tend to increase with the
visual clutter of real-world scenes (e.g., Henderson et al.,
2009; Rosenholtz et al., 2005), this has mainly been
demonstrated in the context of unrelated search displays.
In a typical study, observers are shown a scene and asked
to search for a target, but a qualitatively different scene is
used on every trial (e.g., a street scene followed by a
living room scene, etc.). These scenes are then quantified
in terms of clutter and correlated with search performance.
Such a lack of continuity across scene stimuli introduces
several sources of variability that are typically absent or
minimized in more traditional set size manipulations. For
example, random scenes not only have different levels of
clutter, they will also have different underlying visual
statistics (Greene & Oliva, 2009; Oliva & Torralba, 2006).
Some scenes are dominated by vertical features and greenish
hues (e.g., forest scenes), while others are dominated by
horizontal features and bluish hues (e.g., ocean scenes).
These scene-specific features, to the extent that they differ
in their similarity relationships to the target, would affect
search performance and ultimately lower any correlation
between search and clutter. Moreover, random scenes

will have different semantic labels (e.g., “forest” or
“ocean”), and this too would be expected to affect search
via the introduction of contextual constraints (Torralba et al.,
2006). Neither of these sources of variability are mean-
ingfully present in a typical set size manipulation. Increas-
ing the number of rotated L distractors in a T search task
imposes a greater load, but the underlying “scene” does
not change. What is needed is a search task in which
clutter varies from trial to trial while other factors, such as
feature heterogeneity and scene semantics, are held
relatively constant.
Other studies have used fairly homogenous stimulus

sets, such as maps (Rosenholtz et al., 2007) or the contents
of handbags (Bravo & Farid, 2008), that have largely
avoided this problem, but once again the claim that
increasing clutter is analogous to increasing set size was
not explicitly tested. Central to the concept of a set size
manipulation is the incremental addition of distractors to a
scene. Although map and handbag stimuli might all have
the same “map” and “handbag” semantic labels, individ-
ual elements were not systematically added to the map
displays nor were items incrementally inserted into the
handbag scenes. These semantically homogenous clutter
stimuli therefore more closely approximate standard search
experiments in which different combinations of letter
stimuli are used as targets and distractors, such as a T in
Ls or an O in Qs, but there is nothing akin to a set size
manipulation. In the absence of an incremental manipu-
lation of clutter, the question of whether clutter can serve
as a surrogate measure of search set size effects remains
largely unanswered.
To address this need, in the present study, we used

commercially available gaming software to create scenes
of cities that evolved over time. Each of these search
scenes started with the same “base scene” (time 1), which
depicted a largely barren field with a few scattered roads.
From this common origin, we then developed three types
of cities: a rural city, a suburban city, and an urban city.
We did this by investing different levels of resources within
the context of the game, resulting in highly cluttered urban
scenes, less cluttered suburban scenes, and sparsely
cluttered rural scenes. We predicted that the additional
structures needed to transform a rural city into a suburban
city, and a suburban city into an urban city, would add
clutter and, consequently, decrease search performance in
between-city comparisons. By the same logic, because a
city at time 1 should be less cluttered than the same city at
time 10, which should be less cluttered than at time 20,
these within-city comparisons might also reveal deterio-
rating search performance with increasing subjective and
objective clutter. Furthermore, the expectation that clutter
will accumulate more quickly during the evolution of an
urban city compared to a suburban or rural city leads us
to predict a scene type � within-city clutter interaction,
with a fully matured urban city showing the highest level of
clutter and the worst search performance. Importantly, all
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of these predictions are made in the context of semantically
related scenes that all evolved from the same base scene,
and in the context of an incremental manipulation of
clutter, one that reasonably approximates a standard set
size manipulation.
Second, previous studies relating clutter to search have

relied almost exclusively on purely objective techniques
to quantify visual clutter, such as counting edges or
estimating feature congestion (but see Beck, Lohrenz, &
Trafton, 2010; Lohrenz, Trafton, Beck, & Gendron, 2009;
Rosenholtz et al., 2005; van den Berg, Cornilissen, &
Roerdink, 2009). Although objective clutter estimates are
important and are producing interesting results, perhaps
equally important is the collection of subjective clutter
estimates. Clutter is, after all, a percept, and percepts are
largely subjective in natureVwhat one person perceives as
cluttered another person might perceive as sparse. Sub-
jective clutter estimates might also be influenced by a host
of top-down factors, as opposed to bottom-up factors
derived solely from the search image. Such factors might
affect search behavior by altering the representation of the
target (Chen & Zelinsky, 2006; Yang & Zelinsky, 2009;
Zelinsky, 2008, Experiment 3) or by introducing semantic
associations or contextual scene constraints that restrict
the search space (e.g., Biederman, Glass, & Stacy, 1973;
Brockmole & Henderson, 2006a, 2006b; Eckstein et al.,
2006; Henderson et al., 1999; Neider & Zelinsky, 2006a;
Torralba et al., 2006; Zelinsky & Schmidt, 2009; see
Oliva & Torralba, 2007, for a review). The potentially
considerable variability in search behavior arising from
these top-down factors would not be captured by purely
bottom-up, objective clutter estimates. This may explain
why these purely objective estimates correlate only
modestly with search performance (e.g., R2 on the order
of È0.3 for several measures in Henderson et al., 2009). In
the absence of subjective clutter estimates, it is therefore
impossible to know whether these modest correlations
are due to objective clutter estimates failing to character-
ize search behavior specifically or the perception of clutter
more generally.
We address this problem by collecting subjective clutter

ratings for rural, suburban, and urban scene types at each
step in their development over time. By doing this, we
create a sort of psychological ground truthVa measure of
how cluttered a scene is perceived to be. These subjective
estimates also enable an intermediate step in the evalua-
tion of existing objective clutter techniques; objective
estimates can be correlated with the subjective estimates
as well as the ultimate search performance. It may be that
objective clutter estimates correlate highly with subjec-
tive clutter estimates for the same scenes but that this
correlation drops off when extended to actual search
behavior. Finding this pattern would suggest that objective
estimates are indeed valuable in capturing perceived clutter
but that they are limited as a description of search due to
their failure to account for top-down factors affecting

search performance. Alternatively, we might find that
these objective estimates correlate only modestly with
both search performance and subjective assessments of
clutter. This pattern would indicate a more profound
limitation of the objective clutter technique. In the context
of our evolving quasi-realistic scenes, we might also find
objective clutter correlating well with subjective estimates
and search behavior. This pattern would suggest that the
previously reported modest correlations were likely due
to variability introduced by the use of random unrelated
scenes. For the sake of completeness, is it also possible that
objective clutter might correlate poorly with subjective
clutter but highly with search, although we consider this
possibility to be unlikely.

Methods

Stimuli and design

Scenes varying in clutter were created using the video
game SimCity 4 (EA Games, 2003). SimCity 4 is a civic
simulator that allows players to create unique virtual cities
that grow over time according to the game’s simulation
engine. Three scene types were created: rural, suburban,
and urban cities (Figure 1). In accordance with the
realistic civic planning rules incorporated into the game,
the rural city was constructed using low-density residen-
tial, commercial, and industrial zoning, and the suburban
and urban cities were constructed using medium-density
and high-density zoning, respectively. These different
zoning restrictions constrained the types of structures that
the game could use to build the cities, ultimately producing
cities that varied in their degree of clutter. Importantly, the
construction of each city from the same starting base
landscape imposed a degree of visual and contextual self-
similarity on these scenes, meaning that comparisons
between these city scenes would be more likely to reflect
pure differences in clutterVat least compared to random
scenes. Our expectation was that the rural city would be
the least cluttered, the suburban city would have an
intermediate level of clutter, and the urban city would be
the most cluttered. Moreover, the fact that each city had a
common origin means that these expected clutter differ-
ences should emerge only after the cities had an
opportunity to evolve. Individual scenes were selected so
as to capture this evolution. We captured images of each
city at 30 fixed points in time during its growth, resulting
in a total of 90 rural, suburban, and urban scenes that
incrementally increased in clutter. Images captured at
early time points were generally sparse, as the cities
would not have undergone much development, whereas
images captured at later time points appeared denser,
reflecting the maturation of the city.
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Subjective clutter rating procedure

We used a multistage rating procedure to obtain a
subjective measure of visual clutter for these scenes and to
validate the expected clutter changes resulting from normal
city evolution during game play. First, the 30 images

from each scene type were printed in color, shuffled so
that the images were in a random order rather than the
order in which they were produced by the game, and
placed in separate folders. Twenty-four Stony Brook
University undergraduate students (none of whom partici-
pated in the search experiment) then rank ordered these
images, lowest to highest, for visual clutter. This was done
for all three scene types, rural, suburban, and urban, in a
blocked and counterbalanced order. From these individual
orderings, we then calculated a median ordering of images
for each scene type, reflecting our raters’ average percep-
tion of within-city clutter relationships.
Following this initial rating stage, twelve new raters

assigned a clutter transition score to each consecutive
image pair within each scene’s 30 rank-ordered images
(from the first stage). This was done so as to capture
pairwise magnitude differences in subjective clutter in our
three median-ordered lists, thereby enabling us to estimate
the degree that clutter is perceived to change from scene
to scene throughout a city’s evolution. To generate these
estimates, each rater assigned a score between 0 and
10 indicating the perceived magnitude of the clutter change
between images n and n + 1. For example, a given rater
might have assigned a score of 6 to the transition between
images 3 and 4 in the ordered set of urban scenes but
assigned a score of 2 to the transition between images
20 and 21. This process was continued until each
consecutive image pair was associated with a transition
score. A subjective clutter estimate for each of the
30 images in each of our three city scene types was then
derived by adding the median clutter transition score to
the median clutter score from the previous image pairing;
the first image in each set, which was identical across
scene type, was assigned a score of 0.

Search task procedure and apparatus

Twelve experimentally naive Stony Brook University
undergraduates, all of whom had normal or corrected-to-
normal vision (by self-report), participated as part of a
course requirement. Search stimuli were constructed from
the above-described set of 90 scenes. Appearing in each of
these scenes was a town hall building (Figure 2), which
was the designated target of the search task. To force
the appearance of this building in each city, we used a
provision of the game allowing the player to request the
construction of a particular structure. The game therefore
inserted the target into each scene; targets were not
digitally inserted after the fact by the experimenter. This
is significant, as it removes the concern that artifacts
related to image manipulation might have affected gaze
behavior during search. The target building was È2.86-
along its largest dimension and was located equally often
in each of the four image quadrants for each scene type.
Two search scenes were created from each captured

image (with different target placements), yielding 180 unique

Figure 1. Each of the three scene types started from the same
base image but then matured during game play into more typical
depictions of rural, suburban, and urban cities. Low-clutter scenes
were captured early during game play; high-clutter scenes were
captured later during game play.
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scenes (60 per city type). Note however that because all
three cities used a common starting scene, this design
would produce 6 largely identical images at game time 1;
rural, suburban, and urban cities would not yet have
differentiated, meaning only the target placement would
differ. To avoid this redundancy, we presented scene 1
only twice to observers, thereby maintaining an equal
number of presentations of each unique scene. As a result
of this exclusion, we were left with 176 unique scenes for
use as search stimuli. Each search scene subtended 27-� 20-
of visual angle and was presented in color on a 19W CRT
monitor. Eye movements were recorded throughout using
an SR Research EyeLink II eye tracker sampling at 500 Hz
(with chin rest). All eyemovement measures were quantified
using the tracker’s default algorithms and settings. Button
presses were collected from the observer’s preferred hand
using the two triggers of a GamePad controller.
The events comprising a typical trial are illustrated in

Figure 2. Each trial began with the presentation of a
fixation dot at the center of the screen. Upon its fixation,
and a manual button press (for drift correction), a picture
of the target building was presented centrally for 1 s,
followed by the search scene. The target cue was the same
on every trial, and every search scene contained the target
exactly as it had appeared in the cue. The observer’s task
was to find and fixate the target and to press a button
while holding gaze on the object. In the case of a false
alarm (the observer pressing the button while their gaze
was not on the target), a tone sounded indicating to the

observer that they had not accurately located the target
and that they should continue searching. There were 6
practice trials, followed by 176 experimental trials.

Results

Comparing subjective and objective clutter

Pronounced differences in subjective clutter scores were
found across the three scene types, F(2, 58) = 105.82,
p G 0.001. Bonferroni corrected post hoc comparisons
revealed that urban scenes (mean = 14.49) were assigned
higher clutter scores than both suburban (mean = 9.29,
p G 0.001) and rural (mean = 7.63, p G 0.001) scenes, with
suburban scenes also being scored as more highly
cluttered than rural scenes (p G 0.001). We also analyzed
how clutter within each scene type changed with the city’s
evolution (e.g., the clutter of urban scene n compared to
urban scene n + 1). As expected, clutter scores were
highly correlated with city maturation in all three scene
types (R2 = 0.97, 0.96, and 0.98 for rural, suburban, and
urban scenes, respectively; all p G 0.001); as in the case of
a set size manipulation, as each city grew, observers rated
these scenes as becoming more cluttered.
We explored two objective measures of visual clutter.

First, we calculated the density of edges in each of the city

Figure 2. Procedure used in the search experiment.
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scenes. This was done using the Canny edge detection
method (Canny, 1986) implemented in Matlab (v. 7.8.0).
The Canny method defines strong and weak edges as local
maxima in the intensity gradient of a grayscale image and
includes weak edges only if they are connected to a strong
edge.1 Second, we obtained clutter estimates using the
feature congestion model (Rosenholtz et al., 2007). Our
implementation of this model used Matlab code made
publicly available by the first author. Rosenholtz et al.
(2007) should be consulted for further details regarding
the feature congestion model. Although we analyzed
clutter using each of these objective methods, comparison
of the results revealed a high degree of redundancy in the
obtained patterns. Throughout the remainder of the paper,
we therefore report results only from the edge density
estimates of objective clutter; parallel analyses using
estimates from the feature congestion model can be found
in Supplementary materials.
As in the case of subjective clutter, edge clutter differed

significantly between the three scene types, F(2, 58) =
551.59, p G 0.001. Urban scenes (mean = 33,264) had
higher edge densities than both suburban (mean = 28,933,
p G 0.001) and rural scenes (mean = 18,687, p G 0.001),
with suburban scenes having more edges than rural scenes
(p G 0.001). Edge density also correlated with city
maturation (R2 = 0.39, 0.46, and 0.16 for rural, suburban,
and urban scenes, respectively; all p G 0.05); as each city
grew, so too did edge clutter. Together, these analyses
serve to validate the use of these scenes in studies of
visual clutter. Regardless of whether clutter is measured
subjectively by observer ratings or objectively in terms of
edges, these three cities differed in terms of clutter, with
clutter increasing as each city matured.
To determine whether the objective count of edges in a

scene captured the subjective perception of scene clutter,
we correlated the subjective clutter scores with edge

density in the 30 rural, 30 suburban, and 30 urban images
used in the subjective rating task. Previous work has
shown edge density to be a reasonably good predictor of
visual clutter effects on search performance (Henderson
et al., 2009; Rosenholtz et al., 2007), with the assumption
being that edge density would also correlate with the
subjective perception of clutter. Our analysis largely
confirmed this relationship; edge density correlated highly
with subjectively perceived visual clutter for all three of
our scene types, R2 = 0.56, 0.62, and 0.26 in the rural,
suburban, and urban cities, respectively (Table 1). This
suggests that the objective method of counting edges in a
scene may be a reasonable way of characterizing the
subjective perception of scene clutter, at least for the
evolving city scenes used in this study. However, the fact
that these correlations are imperfect means that other
factors not captured by edge density (or feature conges-
tion; see Supplementary materials) also contribute to
subjective clutter percepts. In the following sections, we
relate both objective edge density and subjective clutter
estimates to search behavior and attempt to determine
which is the better predictor of performance in our search
task.

Manual error rates

Trials in the search task terminated only after an
observer fixated the target while pressing a button
indicating that they had located the target, so a true error
could not be made in this task. However, observers could
mistake non-targets for the target, as indicated by a button
press response when some item other than the target was
fixated. These false alarm rates averaged 1.9%, 1.1%, and
1.5% in rural, suburban, and city scenes, respectively, and
did not differ significantly across scene type, F(2, 22) = 1.65,

Subjective ratings Edge density RT/log(RT) Scan path ratio

Rural
Subjective ratings 1.0 0.56*** 0.52***/0.56*** 0.30**
Edge density 1.0 0.30**/0.44*** 0.16*
RT/log(RT) 1.0/1.0 0.60***/0.57***
Scan path ratio 1.0

Suburban
Subjective ratings 1.0 0.62*** 0.53***/0.71*** 0.21*
Edge density 1.0 0.31**/0.61*** 0.12
RT/log(RT) 1.0/1.0 0.65***/0.44***
Scan path ratio 1.0

Urban
Subjective ratings 1.0 0.26* 0.53***/0.74*** 0.49***
Edge density 1.0 0.10/0.33* 0.12
RT/log(RT) 1.0/1.0 0.83***/0.74***
Scan path ratio 1.0

Table 1. Correlations (R2) between reaction time (RT), log(RT), scan path ratio, and clutter estimates by scene type. Notes: *p G 0.05;
**p G 0.005; ***p G 0.001.
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p = 0.22. Trials in which a false alarm occurred were
excluded from all subsequent analyses.

Manual reaction times

Reaction times (RTs) generally increase with set size in
most complex search tasksVdoes a similar relationship
exist between search RT and visual clutter? One way to
answer this question is to compare RTs between scene
types that differ in both subjective and objective clutter.
Analysis of variance revealed clear between-scene effects
of clutter on RT, F(2, 58) = 26.55, p G 0.001 (Table 2).
Post hoc comparisons confirmed that targets in urban
scenes took longer to find than in suburban (p G 0.005)
or rural (p G 0.001) scenes, with search in the suburban
scenes also requiring more time compared to the less
cluttered rural scenes (p G 0.001). This finding replicates
previous work showing longer search times for more
cluttered visual scenes (Henderson et al., 2009; Rosenholtz
et al., 2007).
To further specify this relationship, we plot, in Figure 3a,

RT as a function of the subjectively rated visual clutter
scores assigned to each of the images from the three
scene types. Reaction times were found to increase with
within-city clutter; regardless of scene type, the increased
subjective clutter accompanying city maturation could
account for about 53% of the variance in manual search
times. Analysis of the slopes of the best-fit regression lines
for each scene type revealed that search times increased
with within-city clutter faster in the urban scenes than in the
suburban, t(11) = 4.34, p G 0.005, or rural scenes, t(11) =
7.13, p G 0.001, and that this increase was also faster for
suburban scenes compared to rural scenes, t(11) = 6.59,
p G 0.001. These slope differences reflect a scene type �
within-city clutter interaction in search times; targets took
longer to find in scenes that became more subjectively
cluttered as they matured.2 Correlations between subjec-
tive clutter and multiple measures of search performance
appear in Table 1, including RT and log(RT). This latter
measure was included to assess the potential for a non-
linear relationship between RT and our clutter estimates.3

Figure 3b shows a similar relationship between RT and
edge density, one of our objective estimates of visual
clutter (see also Supplementary materials). We again
found that search RTs were positively correlated with
visual clutter in the rural and suburban scenes, with edge
density accounting for roughly 30% of the variability in

search times for each task (Table 1). Comparing the slopes
of the best-fit regression lines again confirmed that RTs
increased with edge clutter faster in the suburban scenes
compared to the rural scenes, t(11) = 6.76, p G 0.001.
However, the apparently steeper slope found for urban

Reaction time (ms) Scan path ratio Final saccadic amplitude (degrees) Target verification time (ms)

Rural 1730 (93) 4.09 (0.21) 2.44 (0.19) 550 (18)
Suburban 4130 (415) 8.92 (0.47) 2.01 (0.18) 670 (25)
Urban 8752 (1221) 16.29 (1.52) 1.55 (0.12) 729 (28)

Table 2. Mean search performance measures by scene type. Notes: Values in parentheses indicate one standard error of the means.

Figure 3. Reaction times and best-fit regression lines for urban,
suburban, and rural scenes as a function of (a) subjective clutter
score and (b) edge density. See Supplementary materials for a
corresponding plot showing the relationship between reaction
time and feature congestion.
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scenes should be treated with caution, as the correlation
between RTs and edge density for this scene type was
weaker (R2 = 0.1) and only trended toward significance
(p = 0.08). Although search times increased with edge
content in the case of rural and suburban scenes, in the
case of urban scenes, adding edges did not result in
reliably longer RTs.
From the above analyses, we know that search difficulty

generally increased with both subjective and objective
visual clutter, but do these two measures capture different
aspects of clutter’s influence on search performance? To
address this question, we conducted a multiple regression
analysis for each scene type, with subjective clutter
ratings and edge density being predictor variables and
RT being the dependent variable. When variability due to
edge density was partialled out of the RT � subjective
clutter correlations, we still found highly significant cor-
relations for all three scene types (Rpartial = 0.555, 0.559,
and 0.689 for the rural, suburban, and urban scenes,
respectively; all p G 0.005). However, when we removed
variability associated with subjective clutter from the objec-
tive estimates, these correlations disappeared (Rpartial =
0.015, j0.041, and j0.076 for the rural, suburban, and
urban scenes, respectively; all p 9 0.9). The same regression
analyses conducted for log(RT) produced a similar pattern
of results. This asymmetrical relationship suggests that
nearly all of the variability in search times attributable to
edge clutter can be accounted for by our subjective clutter
estimates but that the converse is not true; objective clutter
estimates based on edge density fail to capture aspects of
the relationship between clutter and manual search effi-
ciency that is captured by our subjective estimates (see
Supplementary materials for an identical analysis using
feature congestion rather than edge density, with identical
conclusions).

Eye movement guidance to the target

Reaction times in a search task can be meaningfully
decomposed into a guidance component, an observer’s
efficiency in moving their eyes to a target, and a decision
component that captures the time needed to reject fixated
distractors or verify the presence of a target (e.g.,
Castelhano et al., 2008; Malcolm & Henderson, 2009,
Yang & Zelinsky, 2009). To characterize the relationship
between visual clutter and search guidance, we computed
a scan path ratio for each trial (Castelhano & Henderson,
2007). This ratio is calculated by dividing the distance
traversed by the eyes during a trial (summed Euclidean
distance between fixations 1 I n, where n is the first
fixation on the target) by the most efficient possible route to
the target, as quantified by the distance from the center of
the screen to the center of the target. A scan path ratio of 1
would, therefore, indicate a direct path to the target and
maximal guidance, with values greater than 1 indicating
increasingly inefficient paths and weaker guidance.

The results of these analyses are reported in Table 2. As
in the case of manual RTs, scan path ratios varied across
scene type, F(2, 22) = 55.15, p G 0.001. In the less
cluttered rural scenes, observers moved their eyes toward
the target far more efficiently (4.09) than in the suburban
(8.92; p G 0.001) or urban (16.29; p G 0.001) scenes. Scan
paths were also more efficient in the suburban scenes
compared to the urban scenes, p G 0.001. Overall, as
between-scene visual clutter increased, observers moved
their eyes less directly to the target.
To examine the effect of within-city clutter on search

guidance, we correlated each observer’s scan path ratio on

Figure 4. Scan path ratios and best-fit regression lines for urban,
suburban, and rural scenes as a function of (a) subjective clutter
score and (b) edge density. See Supplementary materials for a
corresponding plot showing the relationship between scan path
ratio and feature congestion.
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an image-by-image basis with the subjective (Figure 4a)
and objective (Figure 4b) clutter estimates associated with
that particular image (also see Table 1). In general, scan
path ratios correlated well with subjective clutter scores
(R2 = 0.30, 0.21, and 0.49 in the rural, suburban, and
urban scenes, respectively; all p G 0.05), with the slopes of
the best-fit regression lines suggesting that search effi-
ciency decreased with accumulating subjective clutter
fastest in the urban scenes and slowest in the rural scenes
(all p G 0.05). Correlations with within-scene clutter as
measured by edge density were less impressive (see also
Supplementary materials). While scan path ratios correlated
with edge density in rural scenes (R2 = 0.16; p G 0.05),
correlations with suburban (R2 = 0.12; p = 0.06) and urban
scenes (R2 = 0.12; p = 0.06) only trended toward
significance. Multiple regression analyses again showed
that removing variability due to edge clutter from the scan
path � subjective clutter correlations still produced
reliable correlations for the rural and urban scene types
(Rpartial = 0.42 and 0.65, respectively; both p G 0.05) and
a correlation for the suburban scenes that trended toward
significance (Rpartial = 0.33, p = 0.08). However, the
converse relationship again failed to hold; removing the
factor of subjective clutter from the scan path � objective
clutter correlations resulted in the loss of all three
correlations (Rpartial = j0.03, j0.04, and j0.01 for the
rural, suburban, and urban scenes, respectively; all p 9
0.85). Visual clutter as measured by edge density did not
account for additional variance in search guidance over
and above that accounted for by the subjective ratings of
clutter.

Amplitude of final saccade to the target

To examine how clutter affects local detectability, we
analyzed the amplitudes of the saccades that brought gaze
to the target object (Table 2). Final saccade amplitude has
been used as a measure of an observer’s ability to detect a
target pattern in their visual periphery (e.g., Engel, 1977;
Henderson et al., 1999; Krendel & Wodinsky, 1960), with
longer saccades indicating a greater distance over which
peripherally viewed targets can be detected. We found
that saccades to targets differed in amplitude as a function
of between-city clutter, F(2, 22) = 16.71, p G 0.001;
observers made longer final saccades in rural (2.44-) and
suburban (2.01-) scenes than in urban scenes (1.55-; both
p G 0.005) and in rural scenes compared to suburban
scenes (p G 0.05). However, final saccade amplitude was
a relatively weak predictor of within-city clutter, correlat-
ing significantly with subjective clutter for urban scenes
(R2 = 0.14; p G 0.05) but not for rural (R2 = 0.02; p = 0.47)
or suburban (R2 = 0.0004; p = 0.89) scenes. Final saccadic
amplitude failed to correlate reliably with edge density
for any scene type (all p 9 0.49; see also Supplementary
materials).

Target verification time

Scan path ratio and final saccadic amplitude charac-
terized how visual clutter affected eye movement guid-
ance during search, but it is also possible that visual
clutter affected the search decision following fixation of
the target. If this was the case, then we might expect
observers to have looked longer at the target under
conditions of increasing clutter before their button press
response indicating target detection. These target verifica-
tion times, defined as the time between the initial fixation
on the target and the search judgment, are shown in Table 2.
As in the case of the guidance measures, target verifica-
tion times varied across scene type, F(2, 22) = 65.37, p G
0.001. Observers needed less time to make their detection
decisions for the relatively uncluttered rural scenes (550 ms)
compared to the more cluttered suburban (670 ms; p G
0.001) and urban (729 ms; p G 0.001) scenes. Similarly,
observers were slower to verify that a fixated object was the
target in urban scenes than in the less cluttered suburban
scenes, p G 0.005.
This relationship between between-city clutter and

verification time extended also to within-city clutter.
Target verification times correlated with within-city clutter
as estimated by both subjective ratings (R2 = 0.22, 0.18,
and 0.39 for rural, suburban, and urban scenes, respec-
tively; all p G 0.05) and edge density (R2 = 0.29, 0.32, and
0.34 for rural, suburban, and urban scenes, respectively;
all p G 0.01). However, and unlike the dependent measures
reflecting search guidance, multiple regression analyses
revealed no clear superiority of the subjective clutter
estimates over the objective clutter estimates as a predictor
of verification difficulty. The increase in visual clutter that
occurs as a city matures makes it more difficult for
observers to verify the detection of a search target, and
both types of estimates were important in capturing this
effect of visual clutter.

General discussion

We set out to accomplish two goals in this study. First,
we wanted to develop a test bed of scene stimuli that vary
incrementally in clutter, thereby minimizing the large
differences in image statistics that may exist when
semantically unrelated scenes are used as stimuli. Given
that a set size manipulation describes a similarly incre-
mental change as distractors are added to a display, this
enables us to better determine whether clutter can be used
as a surrogate measure of set size in realistic scenes.
Second, we wanted to compare both objective (edge density
and feature congestion) and subjective (rater scores)
estimates of clutter to search performance. Finding that
search behavior correlates with both types of estimates, and
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that each correlates with the other, would mean that search
load effects can be measured using current objective
methods. However, finding that only the subjective mea-
sure of clutter correlates well with search would suggest
that semantic factors may need to be added to existing
models of clutter before their estimates can be used as a
surrogate measure of search set size.
With regard to the relationship between objectively

defined clutter and search, previous work found that
search performance tends to deteriorate as visual clutter
increases; targets take longer to find in more cluttered
scenes (e.g., Henderson et al., 2009; Rosenholtz et al.,
2005). The use of unrelated scenes as stimuli, however,
raised the possibility that the very modest correlations
reported between objective clutter and search might be
due to visual factors related to the semantics of the scenes
masking a stronger relationship. Our method of evolving
scenes ensured that all of our stimuli were highly related,
both visually and semantically, certainly far more so than
random real-world scenes. We found that manual search
times increased with objective clutter between rural,
suburban, and urban city scenes, a pattern consistent with
previous studies that have used related scenes as search
stimuli (Bravo & Farid, 2008; Rosenholtz et al., 2007).
Moreover, the magnitude of these clutter effects were
comparable to previous reports (Henderson et al., 2009),
suggesting that the variability between random real-world
scenes does not dampen the relationship between search
and objective clutter; even when this variability is
minimized, we find that this relationship does not
improve. The incremental nature of the city maturation
process also enabled us to test claims regarding the use of
clutter as a surrogate measure of search set size in complex
scenes. Although we found within-scene correlations
between objective clutter and RT for rural and suburban
cities, these relationships were modest at best (R2 È 0.30),
and no reliable correlation was found for the most
densely cluttered urban city. Edge density and feature
congestion are therefore adequate to capture relatively
large differences in clutter, as exemplified by the reliable
and robust between-city effects reported in this paper,
but more powerful objective methods are needed to capture
the incremental changes in clutter that most closely
approximate a set size manipulation.
In contrast to the modest correlations found between

objective clutter and manual search performance, correla-
tions between subjective clutter estimates and search were
typically much stronger and more robust. Regardless of
the scene type, subjective clutter could account for
roughly half (R2 = È0.52) of the variability in manual
search RTs, about 20% more variance than what could be
explained by our objective clutter estimates. Indeed, when
we included both subjective and objective estimates as
factors in a regression model, we found that subjective
clutter alone could account for nearly all of the predicted
variability in search RTs; the objective clutter estimate
was not a significant contributor to the model.

Three conclusions follow directly from these observa-
tions. First, our observers were highly adept at estimating
the clutter of these city scenes, even when the differences
between scenes were incremental and small, and largely
devoid of distinguishing semantic properties. Second,
these subjective clutter estimates were highly predictive
of search performance, a relationship reinforcing our
opinion that clutter indeed does have the potential to
serve as a meaningful measure of search load in the
context of complex scenes. However, as a cautionary note,
one should realize that even these impressive correlations
between subjective clutter and search fall far short of the
nearly perfect correlations often reported between set size
and manual RTs using simpler stimuli (e.g., Treisman &
Gelade, 1980). Third, subjective clutter estimates largely
include the visual properties captured by objective clutter
estimates, at least for the objective methods used in this
study. On the one hand, this is informative and encourag-
ing. It means that observers could incorporate fairly low-
level visual attributes into their high-level clutter judgments,
an ability that was not at all certain. It also means that
subjective ratings can provide a sort of ground truth for
objective clutter estimates, a benchmark against which
models of clutter can be compared. On the other hand, the
large differences in predictability between our subjective
and objective measures means that current objective
clutter estimates must be improved before they can be
used as a valid surrogate measure of search set size. As for
what these improvements should be, there are several
possibilities. It might be that our subjective estimates
included semantic factors and that these high-level factors
helped predict search performance. If so, then objective
clutter estimates need also to include semantic factors, a
daunting task that is beyond the scope of existing clutter
models. Alternatively, it may be that our subjective
estimates were indeed dominated by visual factors but
that existing objective models are not capturing these
other visual dimensions that are important for predicting
clutter. A final possibility is that our methods of comput-
ing objective clutter were inadequate. For example, it may
be that the scale of the filter used in our edge detector was
too large to capture much of the high-frequency clutter in
the urban city, resulting in the disappointing correlations
between search performance and edge density for that
scene type. Sorting through these possibilities will be an
important direction for future work.
In addition to manual measures, we also analyzed the

eye movements made during search. Eye movement
measures allow search behavior to be decomposed into
smaller epochs, thereby enabling finer grained analyses
(Zelinsky & Sheinberg, 1997). A clear example of this is
the recent practice of segregating search behavior into
guidance and verification components (e.g., Castelhano
et al., 2008; Malcolm & Henderson, 2009; Yang &
Zelinsky, 2009). Doing this, we found a strong effect of
clutter on search guidance; the path taken by gaze to the
target was nearly four times less efficient for urban
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cities compared to rural cities. Search path efficiency also
decreased with increasing clutter as each type of city
matured over time, although this relationship was found
primarily in just the subjective clutter estimates. A similar
relationship was found in the time needed to verify the
target’s presence after fixation. For all three scene types,
increasing clutter resulted in longer target verification
times. This is consistent with the suggestion that the time
needed to discriminate a target from a background
increases with target–background feature similarity (Boot
et al., 2009; Neider & Zelinsky, 2006b; Wolfe et al., 2002).
These effects of clutter on search guidance and target

verification can be broadly interpreted in terms of guided
search theory (Wolfe, 1994a; Wolfe, Cave, & Franzel,
1989) and feature congestion, the suggestion that clutter
effects arise when a scene’s features begin to fill a given
feature space (Rosenholtz et al., 2005, 2007). As visual
clutter increases, so does the probability of non-target
features matching the target, resulting in weakened
guidance and a less direct search path to the target. Note
that this can also be interpreted as an effect of target–
distractor similarity; as clutter increases so does the variety
of buildings appearing in a scene, thereby increasing the
likelihood that one of these buildings will look like the
target. A similar interpretation holds for target verification.
As clutter increases, so does the probability of local
background features matching the target, making the task
of discriminating the target from the background more
difficult. This potential for target–background discrimina-
tion to be affected by lower level visual processes might
also explain why our objective clutter measures played a
larger role in the case of target verification.
By analyzing the amplitude of the saccade used to bring

gaze to the target, we also estimated how far in the visual
periphery observers were able to detect a target and how
this distance varied with clutter. This describes a sort of
middle ground between guidance and target verification,
reflecting the very strong guidance signal that presumably
mediates the gaze movement that aligns fixation with a
target. Although Henderson et al. (2009) found that
saccade amplitudes were generally unaffected by clutter,
our analysis of final saccade amplitudes suggested other-
wise. Final saccade amplitudes were longest for the
uncluttered rural scenes, shorter for the suburban scenes,
and shorter still for the highly cluttered urban scenes. This
effect, however, was limited to subjective clutter estimates
and between-city clutter comparisons and must, therefore,
be interpreted with caution. Still, this relationship suggests
that clutter may affect the size of the area surrounding
fixation over which an observer can extract high-quality
information about the target, also known as the useful field
of view, the functional visual field, or the conspicuity area
(Ball, Beard, Roenker, Miller, & Griggs, 1988; Bouma,
1978; Engel, 1971, 1977; Mackworth, 1965). We spec-
ulate that this clutter effect may be caused by the same
feature confusability between the local background and
target that we believe resulted in the observed effect of

clutter on target verification; given that the probability of
a confusable feature appearing near to the target increases
with visual clutter, as clutter decreases, targets can be
detected farther out in the visual periphery.
In conclusion, we found evidence for a relationship

between visual clutter and a variety of search behaviors
using evolving scenes that more closely approximated the
incremental changes characterizing a standard set size
manipulation. However, these relationships were strongest
for our subjective estimates of clutter. Although our
subjective and objective clutter estimates correlated highly
with each other, objective clutter was a generally poorer
predictor of search behavior, and the behavioral variability
captured by these estimates could be explained almost
entirely in terms of subjective clutter. This is a cause for
concern among researchers seeking to use objective clutter
as a surrogate for set size and raises the question of what
this measure is missing that the subjective measure is not.
Most obviously, objective measures would fail to capture
semantic contributions to clutter. Whereas objective clutter
might plateau early during a city’s evolution, with each
new structure adding edges but also erasing those from
preexisting structures (a dynamic that might explain the
generally lower correlations found between objective
clutter and search performance in our urban scenes), a
qualitatively different dynamic would likely exist for a
city’s semantic evolution. Schools and hospitals and sky-
scrapers may replace a conceptually homogeneous block of
houses in a suburban city or a textured field in a rural scene.
We believe that it is this conceptual congestion that is
responsible for the more pronounced relationship between
subjective clutter and search. The degree of conceptual
congestion in a scene is likely related to type versus token
distinctions in perception (e.g., Kanwisher, 1987, 1991). If
a suburban neighborhood of 30 houses is replaced with a
school and a park and an office building, in some sense
there was a three-fold increase in the number of
conceptual units; where once there were several tokens
of a single house type, there are now three different types
of structures. We speculate that it is the number of types
of objects in a scene that drive clutter effects, not the
number of tokens. Future work will explore this type/
token distinction in the context of realistic scenes so as to
better understand the role of conceptual congestion in
real-world search.
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Footnotes

1
Our implementation of the Canny edge detector used a

sigma of 3, and no attempt was made to explore the range
of this parameter to find values optimized for the city
scenes used in this experiment. It is therefore possible that
the use of different filter scales might have resulted in
different estimates of edge density.

2
Given that subjective clutter was rated separately for

each scene type, one might argue that raters used different
subjective clutter scales for the rural, suburban, and urban
cities and that this compromises between-scene compar-
isons. While this cannot be ruled out, our data argue
against this possibility. The use of different scales would
serve to normalize for clutter differences between scenes,
thereby discouraging the expression of clutter effects. The
fact that we found large and significant differences in
subjective clutter between scenes is more consistent with
the use of a single subjective clutter scale.

3
In general, correlations with log(RT) were generally

higher than those with RT for both subjective clutter
ratings and edge density, thereby largely preserving the
relative differences between the two types of clutter
estimates.
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