1,903 research outputs found
Gauge-invariant field-strength correlators for QCD in a magnetic background
We consider the properties of the gauge-invariant two-point correlation
functions of the gauge-field strengths for QCD in the presence of a magnetic
background field. We discuss the general structure of the correlators in this
case and provide the results of an exploratory lattice study for QCD
discretized with unimproved staggered fermions. Our analysis provides evidence
for the emergence of anisotropies in the non-perturbative part of the
correlators and for an increase of the gluon condensate as a function of the
external magnetic field.Comment: Published version. Added table with perturbative parameters values. 8
pages, 5 figure
Field-strength correlators for QCD in a magnetic background
We present the results of an exploratory study (by means of Monte Carlo simulations on the lattice) of the properties of the gauge-invariant two-point correlation functions of the gauge-field strengths for N_f=2 QCD at zero temperature and in the presence of a magnetic background field: the analysis provides evidence for the emergence of anisotropies in the nonperturbative part of the correlators and for an increase of the gluon condensate as a function of the external magnetic field
Design and optimization of a portable LQCD Monte Carlo code using OpenACC
The present panorama of HPC architectures is extremely heterogeneous, ranging
from traditional multi-core CPU processors, supporting a wide class of
applications but delivering moderate computing performance, to many-core GPUs,
exploiting aggressive data-parallelism and delivering higher performances for
streaming computing applications. In this scenario, code portability (and
performance portability) become necessary for easy maintainability of
applications; this is very relevant in scientific computing where code changes
are very frequent, making it tedious and prone to error to keep different code
versions aligned. In this work we present the design and optimization of a
state-of-the-art production-level LQCD Monte Carlo application, using the
directive-based OpenACC programming model. OpenACC abstracts parallel
programming to a descriptive level, relieving programmers from specifying how
codes should be mapped onto the target architecture. We describe the
implementation of a code fully written in OpenACC, and show that we are able to
target several different architectures, including state-of-the-art traditional
CPUs and GPUs, with the same code. We also measure performance, evaluating the
computing efficiency of our OpenACC code on several architectures, comparing
with GPU-specific implementations and showing that a good level of
performance-portability can be reached.Comment: 26 pages, 2 png figures, preprint of an article submitted for
consideration in International Journal of Modern Physics
Elucidation of role of graphene in catalytic designs for electroreduction of oxygen
Graphene is, in principle, a promising material for consideration as
component (support, active site) of electrocatalytic materials, particularly
with respect to reduction of oxygen, an electrode reaction of importance to
low-temperature fuel cell technology. Different concepts of utilization,
including nanostructuring, doping, admixing, preconditioning, modification or
functionalization of various graphene-based systems for catalytic
electroreduction of oxygen are elucidated, as well as important strategies to
enhance the systems' overall activity and stability are discussed
Evaluation of Reduced-Graphene-Oxide Aligned with WO3-Nanorods as Support for Pt Nanoparticles during Oxygen Electroreduction in Acid Medium
Hybrid supports composed of chemically-reduced graphene-oxide-aligned with
tungsten oxide nanowires are considered here as active carriers for dispersed
platinum with an ultimate goal of producing improved catalysts for
electroreduction of oxygen in acid medium. Here WO3 nanostructures are expected
to be attached mainly to the edges of graphene thus making the hybrid structure
not only highly porous but also capable of preventing graphene stacking and
creating numerous sites for the deposition of Pt nanoparticles. Comparison has
been made to the analogous systems utilizing neither reduced graphene oxide nor
tungsten oxide component. By over-coating the reduced-graphene-oxide support
with WO3 nanorods, the electrocatalytic activity of the system toward the
reduction of oxygen in acid medium has been enhanced even at the low Pt loading
of 30 microg cm-2. The RRDE data are consistent with decreased formation of
hydrogen peroxide in the presence of WO3. Among important issues are such
features of the oxide as porosity, large population of hydroxyl groups, high
Broensted acidity, as well as fast electron transfers coupled to unimpeded
proton displacements. The conclusions are supported with mechanistic and
kinetic studies involving double-potential-step chronocoulometry as an
alternative diagnostic tool to rotating ring-disk voltammetry.Comment: arXiv admin note: text overlap with arXiv:1805.0315
- …