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1. Introduction

In the last few years, an increasing interest has arisen in the scientific community about the
study of the strong interactions in the presence of strong magnetic fields (see, e.g., Ref. [1]).

From a phenomenological point of view, the physics of some compact astrophysical objects,
like magnetars, of noncentral heavy ion collisions and of the early Universe involve the properties
of quarks and gluons in the presence of magnetic backgrounds going from 1010 Tesla up to 1016

Tesla (i.e., up to|e|B∼ 1 GeV2).
From a purely theoretical point of view, one emerging feature is that gluonfields, even if

not directly coupled to electromagnetic fields, can be significantly affected by them: effective
QED-QCD interactions, induced by quark loop contributions, can be important, because of the
nonperturbative nature of the theory (see, e.g., Refs. [2, 3, 4, 5, 6]).

It is well known (see Ref. [7] for a complete review on this subject) that many nonperturbative
properties of the QCD vacuum can be usefully parametrized in terms of the gauge-invariant two-
point field-strength correlators, defined as:

Dµρ,νσ (x) = g2〈Tr[Gµρ(0)S(0,x)Gνσ (x)S
†(0,x)]〉, (1.1)

whereGµρ = TaGa
µρ is the field-strength tensor (Ta being theSU(3) fundamental generators), and

S(0,x) is the parallel transport from 0 tox along a straight line, needed to make the correlators gauge
invariant. Such correlators were first considered to take into account the nonuniform distributions
of the vacuum condensates and their effects on the levels of theQQ bound states.

Here we present the results of an exploratory lattice study [8] (performed for Nf = 2 QCD at
zero temperature) of the effects of a magnetic background field on these gluon-field correlators.
The analysis is focused on a quantity of phenomenological interest which can be extracted from
the correlators, the so-calledgluon condensate.

2. Field-strength correlators in the absence or presence ofexternal fields

In the vacuum and in the absence of external sources, Lorentz symmetry(SO(4) symmetry in
the Euclidean space) implies a simple form for the two-point functions in Eq. (1.1), which can be
expressed in terms of two independent scalar functions ofx2, which are usually denoted byD(x2)

andD1(x2) (see Ref. [7] and references therein):

Dµρ,νσ (x) = (δµνδρσ −δµσ δρν)
[

D(x2)+D1(x
2)
]

+(xµxνδρσ −xµxσ δρν +xρxσ δµν −xρxνδµσ )
∂D1(x2)

∂x2 . (2.1)

The presence of an external field breaks Lorentz/SO(4) symmetry, so that the most general parame-
trization is more complex than the one reported in Eq. (2.1). A detailed discussion of this problem
can be found in Ref. [8] and will not be reported here.

On the other hand, in our investigation on the lattice we have considered only correlators of
the kindDµν ,ξ (d) ≡ Dµν ,µν(x= dξ̂ ), where the two plaquettes are parallel to each other and the
separationx is along one (̂ξ ) of the four basis vectors of the lattice [ ˆx= (1,0,0,0), ŷ= (0,1,0,0),
ẑ= (0,0,1,0), t̂ = (0,0,0,1)]. These amount, in general, to 24 different correlation functions.
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Without any additional external field, the symmetries of the system group these 24 correlators into
two equivalence classes, usually denoted asD‖ (whenξ = µ or ξ = ν ) andD⊥ (whenξ 6= µ and
ξ 6= ν), with D‖ = D +D1+x2 ∂D1

∂x2 andD⊥ = D +D1.
In the presence of a constant and uniform magnetic field~B oriented along thez axis (~B= Bẑ),

theSO(4) Euclidean symmetry breaks intoSO(2)xy⊗SO(2)zt. By virtue of this residual symmetry
(which implies two equivalence relations, one between the twotransversedirections ˆx ∼ ŷ and
another between the twolongitudinal[or: “parallel”] directionsẑ∼ t̂), the 24 correlation functions
Dµν ,ξ are grouped into 8 equivalence classes, which can be denoted as:

D
tt,t
‖ , D

tt,p
⊥ , D

t p,t
‖ , D

t p,p
‖ , D

t p,t
⊥ , D

t p,p
⊥ , D

pp,t
⊥ , D

pp,p
‖ , (2.2)

where the superscriptst and p stand respectively for thetransverse(x̂, ŷ) directions and for the
“parallel” ( ẑ, t̂) directions.

In the absence of external field (B= 0), the correlators were directly determined by numerical
simulations on the lattice in Refs. [9, 10, 11, 12], using the following parametrization vs. the
distanced: D = A0e−µd + a0

d4 , D1 = A1e−µd + a1
d4 ; that is, in terms ofD‖ andD⊥:

D‖ =

[

A0+A1

(

1−
1
2

µd

)]

e−µd +
a‖
d4 , D⊥ = (A0+A1)e−µd +

a⊥
d4 , (2.3)

wherea‖ = a0−a1 anda⊥ = a0+a1. The terms∼ 1/d4 are of perturbative origin and (according
to theOperator Product Expansion) are necessary to describe the short-distance behavior of the
correlators. The exponential terms represent, instead, the nonperturbative contributions: in partic-
ular, the coefficientsA0 andA1 can be directly linked to thegluon condensateof the QCD vacuum
(see Eq. (3.3) below).

Inspired by the parametrization (2.3) used in the caseB= 0, we have used for the eight func-
tions (2.2) in the caseB 6= 0 the following parametrization:

D
tt,t
‖ =

[

Att
0 +Att

1

(

1−
1
2

µ tt,td

)]

e−µ tt,td +
att,t
‖

d4 , D
tt,p
⊥ = (Att

0 +Att
1)e

−µ tt,pd +
att,p
⊥

d4 ,

D
t p,t
‖ =

[

At p
0 +At p

1

(

1−
1
2

µ t p,td

)]

e−µ t p,td +
at p,t
‖

d4 ,

D
t p,p
‖ =

[

Ãt p
0 + Ãt p

1

(

1−
1
2

µ t p,pd

)]

e−µ t p,pd +
at p,p
‖

d4 ,

D
t p,t
⊥ = (At p

0 +At p
1 )e−µ t p,td +

at p,t
⊥

d4 , D
t p,p
⊥ = (Ãt p

0 + Ãt p
1 )e−µ t p,pd +

at p,p
⊥

d4 ,

D
pp,t
⊥ = (App

0 +App
1 )e−µ pp,td +

app,t
⊥

d4 ,

D
pp,p
‖ =

[

App
0 +App

1

(

1−
1
2

µ pp,pd

)]

e−µ pp,pd +
app,p
‖

d4 , (2.4)

with the constraintÃt p
0 + Ãt p

1 = At p
0 +At p

1 , meaning that, atd = 0, the nonperturbative part of the
correlation functionsD t p have the same value. The dependence of the various parameters onB is
understood and will be discussed in the next section on the basis of the numerical results obtained
in Ref. [8] by lattice simulations ofNf = 2 QCD (at zero temperature).
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3. Numerical investigation and discussion on the gluon condensate

The correlatorDµν ,ξ (d)≡ Dµν ,µν(x= dξ̂ ) has been discretized through the following lattice
observable [9, 10]:

D
L
µν ,ξ (d) =

〈

Tr
[

Ω†
µν(x)S(x,x+dξ̂ )Ωµν(x+dξ̂ )S†(x,x+dξ̂ )

]〉

, (3.1)

whereΩµν(x) stands for the traceless anti-Hermitian part of the corresponding plaquette, i.e.,
Ωµν ≡ 1

2(Πµν −Π†
µν)−

1
6Tr[Πµν −Π†

µν ]I . Of course,DL
µν ,ξ (d) → a4Dµν ,ξ (d) when the lattice

spacinga→ 0.
We have consideredNf = 2 QCD discretized via unimproved rootedstaggeredfermions and

the standard plaquette action for the pure-gauge sector. The background magnetic field~B=Bẑcou-
ples to the quark electric charges (qu = 2|e|/3 andqd = −|e|/3, |e| being the elementary charge)
and its introduction corresponds to additionalU(1) phases entering the elementary parallel trans-
ports in the discretized lattice version. Periodicity constraints impose the following condition of
quantization onB: |e|B= 6πb/(a2LxLy), b∈ Z.

Numerical simulations have been performed on a 244 lattice by means of theRational Hybrid
Monte Carloalgorithm [13, 14] implemented on GPU cards, with statistics ofO(103) molecular-
dynamics time units for eachb, with b ranging from 0 to 18 (corresponding to 0≤ |e|B ≤ 1.46
GeV2). The bare parameters have been set toβ = 5.55 andam= 0.0125, corresponding to a lattice
spacinga≃ 0.125 fm and to a pseudo-Goldstone pion massmπ ≃ 480 MeV.

In order to remove ultraviolet fluctuations, following the previous studies ofthe gluon-field
correlators [9, 10, 11, 12], acooling technique has been used which, acting as a diffusion process,
smooths out short-distance fluctuations without touching physics at largerdistances: for a correlator
at a given distanced, this shows up as an approximate plateau in the dependence of the correlator
on the number of cooling steps, whose location defines the value of the correlator.

For each value of|e|B, we have fitted the correlators with the parametrization (2.4), including
distances in the range 3≤ d/a ≤ 8, thus obtaining an estimate for all parameters. From these
best fits, it has emerged that the 8 parameters pertaining to the perturbativepart of the correlation
functions (2.4) satisfy, within the errors, the following equalities:

att,t
‖ ≃ at p,t

‖ ≃ at p,p
‖ ≃ app,p

‖ ≡ a‖, att,p
⊥ ≃ at p,t

⊥ ≃ at p,p
⊥ ≃ app,t

⊥ ≡ a⊥, (3.2)

and, moreover, their dependence onB is negligible. In other words, the perturbative part of the
correlators shows no significant departure from the caseB= 0 [see Eq. (2.3)]: therefore, we have
fitted again all the data with the parametrization (2.4) together with the assumption (3.2).

Concerning the parametersµ [i.e., the inverse of thecorrelation lengthsin the exponential
terms in Eq. (2.4)], they show a general tendency for a modest increase, which amounts to about
5−10% for the largest values of|e|B and is slightly more visible for the correlators in the directions
orthogonal to~B.

Among the various parameters entering Eq. (2.4), the ones showing the mostpronounced
variation with|e|B have been the nonperturbative coefficientsA0 andA1. That implies a significant
dependence on the magnetic field of thegluon condensate, which is defined as:

G2 =
g2

4π2 ∑
µν ,a

〈Ga
µνGa

µν〉 (3.3)
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and is related to the correlator in Eq. (1.1) through anOperator Product Expansion. It encodes the
main effect of nonperturbative physics to gluon dynamics and its relevance was first pointed out
in Ref. [15]. One can extractG2 from the small-distance limit of the nonperturbative part of the
correlator, obtaining, using our parametrization (2.4):

G2 =
1

π2

[(

Att
0 +Att

1

)

+4
(

At p
0 +At p

1

)

+
(

App
0 +App

1

)]

≡ Gtt
2 +Gt p

2 +Gpp
2 , (3.4)

where, in the last passage, we have distinguished three contributions, coming from different sets
of plaquettes. In Fig. 1 we report the values obtained forG2 as a function of|e|B, normalized to
the value of the condensate obtained forB = 0, where we obtainG2 = 3.56(5) ·10−2 GeV4, the
reported error being just the statistical one.

We notice thatG2 grows as a function of|e|B, the increase being of the order of 25% for the
largest value of|e|B explored. In the same figure we also report the relative increases in theGtt

2 ,
Gt p

2 andGpp
2 terms. We see that thett term is the most affected by the magnetic field, whereas

the pp contribution shows a really modest dependence on|e|B. In Fig. 1, the best fit with a
quadratic functionG2(|e|B)/G2(0) = 1+K(|e|B)2 is also plotted. We obtainK = 0.164(7) GeV−4

andχ2/nd.o.f. = 1.52, excluding the point at|e|B= 1.46 GeV2.
An increase of the chromomagnetic gluon condensate with|e|B has been also found in Ref.

[2], which is in qualitative agreement with the result presented here. A similarbehaviour forG2

has been also predicted making use of QCD sum rules [16].

4. Conclusions

We have found evidence of a significant effect of the external magneticfield on the gluon-field
correlation functions. In particular, a large effect (and a significant anisotropy) is observed for the
coefficients of the nonperturbative terms in Eq. (2.4), which, on the basisof Eq. (3.4), can be
directly related to the gluon condensate. Due to the explicit Lorentz/SO(4) symmetry breaking
caused by the magnetic field, we can distinguish among three different contributions to the gluon
condensate. An analysis based on Eq. (3.4) shows that each term has adifferent behaviour as a
function of the magnetic field (see Fig. 1). Starting from that, we have observed that the gluon con-
densate itself increases as a function ofB, with the increase being of the order of 20% for|e|B∼ 1
GeV2. Relative differences between the different contributions are of the same order of magnitude,
meaning that anisotropies induced byB are significant and comparable to those observed in other
pure-gauge quantities (see, e.g., Ref. [6]). The increase of the gluoncondensate provides evidence
of the phenomenon known asgluon catalysis, which had been previously observed analysing the
magnetic-field effects on plaquette expectation values [3, 4, 5].
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