5,846 research outputs found

    The three-dimensional easy morphological (3-DEMO) classification of scoliosis, part II: repeatability

    Get PDF
    BACKGROUND: In the first part of this study we proposed a new classification approach for spinal deformities (3-DEMO). To be valid, a classification needs to overcome the repeatability issue which is inherent both in the used classificatory system and in the measured object. AIM: The aim of this study is to present procedures and results obtained within the repeatability of 3-DEMO classification for scoliosis analysis. METHOD: We acquired the data of 100 pathological and 20 normal spines with an optoelectronic system (AUSCAN) and of two dummies with simulated spine deformity. On the obtained 3D reconstruction of the spine, we considered the coronal view with a spinal reference system (Top View) and its three related parameters, defined in part I, constituting the 3-DEMO classification. We calculated the repeatability coefficient for the subjects (two acquisitions for each subject with a time interval of 26 ± 12 sec), whereas we evaluated the system measurement error calculating the standard deviation of 50 consecutive acquisitions for each dummy. RESULTS: Comparing the results of the two types of acquisition, it emerged that the main part of parameters variability was due to postural adjustments The proportion of agreement for the 3-DEMO parameters gives a k value above 0.8; almost 10% of patients changed classification because of postural adjustments, but none had a "mirror-like" variation nor a change in more of one parameter at a time Repeatability coefficient is lower than the previously calculated normative limits. DISCUSSION: The 3-DEMO classification has a high repeatability when evaluated with an optoelectronic system such as the AUSCAN System, whose systematic error is very low. This means that the implied physiological phenomenon is consistent and overcomes the postural variability inherent in the measured object (normal or pathological subject)

    Adult scoliosis can be reduced through specific SEAS exercises: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been known since many years that scoliosis can continue to progress after skeletal maturity: the rate of progression has shown to be linear, and it can be used to establish an individual prognosis. Once there is progression there is an indication for treatment: usually it is proposed a surgical one. There are very few papers on an alternative rehabilitation approach; since many years we propose specific SEAS exercises and the aim of this study is to present one case report on this approach.</p> <p>Case presentation</p> <p>All radiographs have been measured blindly twice using the same protractor by one expert physician whose repeatability error proved to be < 3° Cobb; the average measurement has been used. In this case a 25 years old female scoliosis patient, previously treated from 14 (Risser 1) to 19 years of age with a decrease of the curve from 46° to 37°, showed a progression of 10° Cobb in 6 years. The patient has then been treated with SEAS exercises only, and in one year progression has been reverted from 47° to 28.5°.</p> <p>Conclusion</p> <p>A scoliosis curve is made of different components: the structural bony and ligamentous components, and a postural one that counts up to 9° in children, while it has not been quantified in adults. This case shows that when adult scoliosis aggravates it is possible to intervene with specific exercises (SEAS) not just to get stability, but to recover last years collapse. The reduction of scoliotic curve through rehabilitation presumably does not indicate a reduction of the bone deformity, but rely on a recovery of the upright postural collapse. This reduction can decrease the chronic asymmetric load on the spine and, in the long run, reduce the risks of progression.</p

    The Rhie-Chow stabilized Box Method for the Stokes problem

    Full text link
    The Finite Volume method (FVM) is widely adopted in many different applications because of its built-in conservation properties, its ability to deal with arbitrary mesh and its computational efficiency. In this work, we consider the Rhie-Chow stabilized Box Method (RCBM) for the approximation of the Stokes problem. The Box Method (BM) is a piecewise linear Petrov-Galerkin formulation on the Voronoi dual mesh of a Delaunay triangulation, whereas the Rhie-Chow (RC) stabilization is a well known stabilization technique for FVM. The first part of the paper provides a variational formulation of the RC stabilization and discusses the validity of crucial properties relevant for the well-posedeness and convergence of RCBM. Moreover, a numerical exploration of the convergence properties of the method on 2D and 3D test cases is presented. The last part of the paper considers the theoretically justification of the well-posedeness of RCBM and the experimentally observed convergence rates. This latter justification hinges upon suitable assumptions, whose validity is numerically explored.Comment: 27 pages, 6 figures, 4 table

    Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren

    Get PDF
    The school backpack constitutes a daily load for schoolchildren: we set out to analyse the postural effects of this load, considering trunk rotation, shoulder asymmetry, thoracic kyphosis, lumbar lordosis, and sagittal and frontal decompensation from the plumbline. A group of 43 subjects (mean age = 12.5 ± 0.5 years) were considered: average backpack loads and average time spent getting to/from home/school (7 min) had been determined in a previous study conducted on this population. Children were evaluated by means of an optoelectronic device in different conditions corresponding to their usual everyday school backpack activities: without load; bearing 12 (week maximum) and 8 (week average) kg symmetrical loads; bearing an 8 kg asymmetrical load; after fatigue due to backpack carrying (a 7-minute treadmill walking session bearing an 8 kg symmetrical load). Both types of load induce changes in posture: the symmetrical one in the sagittal plane, without statistical significant differences between 8 and 12 kg, and the asymmetrical one in all anatomical planes. Usual fatigue accentuates sagittal effects, but recovery of all parameters (except lumbar lordosis) follows removal of the load. The backpack load effect on schoolchildren posture should be more carefully evaluated in the future, even if we must bear in mind that laws protect workers to carry heavy loads but not children, and results in the literature support the hypothesis that back pain in youngsters is correlated with back pain in adulthoo

    Specific exercises performed in the period of brace weaning can avoid loss of correction in Adolescent Idiopathic Scoliosis (AIS) patients: Winner of SOSORT's 2008 Award for Best Clinical Paper

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercises are frequently performed in order to improve the efficacy of bracing and avoid its collateral effects. Very frequently there is a loss of correction during brace weaning in AIS treatment.</p> <p>Aim</p> <p>To verify the efficacy of exercises in reducing correction loss during brace weaning.</p> <p>Study Design</p> <p>Retrospective controlled study.</p> <p>Population</p> <p>Sixty-eight consecutive patients (eight males), age 15 ± 1 and Cobb angle 22 ± 8° at start of brace weaning.</p> <p>Methods</p> <p>The start of brace weaning was defined as the first visit in which the wearing of brace for less than 18/24 hours was prescribed (according to our protocol, at Risser 3). Patients were divided into two groups according to whether or not exercises were performed: (1) EX (exercises), included 39 patients and was further divided into two sub-groups: SEAS (who performed exercises according to our institute's protocol, 14 patients) and OTH (other exercises, 25 patients) and (2) CON (controls, 29 patients) that was divided into two other sub-groups: DIS (discontinuous exercises, 19 patients) and NO (no exercises, 10 patients). Complete brace weaning was defined as the first visit in which the brace was no longer prescribed (ringapophysis closure or Risser 5, according to our protocol).</p> <p>ANOVA and Chi Square tests were performed.</p> <p>Results</p> <p>There was no difference between groups at baseline. However, at the end of treatment, 2.7 years after the start of the weaning process, Cobb angle increased significantly in both the DIS and NO groups (3.9° and 3.1° Cobb, respectively). The SEAS and OTH groups did not change. Comparing single groups, OTH (with respect to DIS) had a significant difference (P < 0.05).</p> <p>Conclusion</p> <p>Exercises can help reduce the correction loss in brace weaning for AIS.</p
    • …
    corecore