17 research outputs found

    Single session imaging of cerebellum at 7 tesla: Obtaining structure and function of multiple motor subsystems in individual subjects

    Get PDF
    The recent increase in the use of high field MR systems is accompanied by a demand for acquisition techniques and coil systems that can take advantage of increased power and accuracy without being susceptible to increased noise. Physical location and anatomical complexity of targeted regions must be considered when attempting to image deeper structures with small nuclei and/or complex cytoarchitechtonics (i.e. small microvasculature and deep nuclei), such as the brainstem and the cerebellum (Cb). Once these obstacles are overcome, the concomitant increase in signal strength at higher field strength should allow for faster acquisition of MR images. Here we show that it is technically feasible to quickly and accurately detect blood oxygen level dependent (BOLD) signal changes and obtain anatomical images of Cb at high spatial resolutions in individual subjects at 7 Tesla in a single one-hour session. Images were obtained using two high-density multi-element surface coils (32 channels in total) placed beneath the head at the level of Cb, two channel transmission, and three-dimensional sensitivity encoded (3D, SENSE) acquisitions to investigate sensorimotor activations in Cb. Two classic sensorimotor tasks were used to detect Cb activations. BOLD signal changes during motor activity resulted in concentrated clusters of activity within the Cb lobules associated with each task, observed consistently and independently in each subject: Oculomotor vermis (VI/VII) and CrusI/II for pro- and anti-saccades; ipsilateral hemispheres IV-VI for finger tapping; and topographical separation of eye- and hand- activations in hemispheres VI and VIIb/VIII. Though fast temporal resolution was not attempted here, these functional patches of highly specific BOLD signal changes may reflect small-scale shunting of blood in the microvasculature of Cb. The observed improvements in acquisition time and signal detection are ideal for individualized investigations such as differentiation of functional zones prior to surgery. Copyright

    Grasping preparation enhances orientation change detection

    Get PDF
    Contains fulltext : 130275.pdf (publisher's version ) (Open Access)Preparing a goal directed movement often requires detailed analysis of our environment. When picking up an object, its orientation, size and relative distance are relevant parameters when preparing a successful grasp. It would therefore be beneficial if the motor system is able to influence early perception such that information processing needs for action control are met at the earliest possible stage. However, only a few studies reported (indirect) evidence for action-induced visual perception improvements. We therefore aimed to provide direct evidence for a feature-specific perceptual modulation during the planning phase of a grasping action. Human subjects were instructed to either grasp or point to a bar while simultaneously performing an orientation discrimination task. The bar could slightly change its orientation during grasping preparation. By analyzing discrimination response probabilities, we found increased perceptual sensitivity to orientation changes when subjects were instructed to grasp the bar, rather than point to it. As a control experiment, the same experiment was repeated using bar luminance changes, a feature that is not relevant for either grasping or pointing. Here, no differences in visual sensitivity between grasping and pointing were found. The present results constitute first direct evidence for increased perceptual sensitivity to a visual feature that is relevant for a certain skeletomotor act during the movement preparation phase. We speculate that such action-induced perception improvements are controlled by neuronal feedback mechanisms from cortical motor planning areas to early visual cortex, similar to what was recently established for spatial perception improvements shortly before eye movements.8 p

    Testing Some Covariance Structures under a Growth Curve Model in High Dimension

    No full text
    fIn this paper we consider the problem of testing (a) sphericity and (b) intraclass covariance structure under a Growth Curve model. The maximum likelihood estimator (MLE) for the mean in a Growth Curve model is a weighted estimator with the inverse of the sample covariance matrix which is unstable for large p close to N and singular for p larger than N. The MLE for the covariance matrix is based on the MLE for the mean, which can be very poor for p close to N. or both structures (a) and (b), we modify the MLE for the mean to n unweighted estimator and based on this estimator we propose a new estimator for the covariance matrix. This new estimator leads to new tests for (a) and (b). We also propose two other tests for each structure, which are just based on the sample covariance matrix.    To compare the performance of all four tests we compute or each structure (a) and (b) the attained signicance level and the empirical power. We show that one of the tests based on the sample covariance matrix is better than the likelihood ratio test based on the MLE

    La différenciation pédagogique en badminton

    No full text
    Pédagogie différenciée : illustration lors d'un cycle badminton. Inventaire des pistes possibles : formes de groupement des élèves, aménagement matériel, modification ou adaptation du règlement, proposition de situations d'apprentissage adaptées, évaluation différenciée ..

    Interactions between ego- and allocentric neuronal representations of space

    No full text
    In the primate brain, visual spatial representations express distances of objects with regard to different references. In the parietal cortex, distances are thought to be represented with respect to the body (egocentric representation) and in superior temporal cortices with respect to other objects, independent of the observer (allocentric representation). However, these representations of space are interdependent, complicating such distinctions. Specifically, an object's position within a background frame strongly biases egocentric position location judgments. This bias, however, is absent for pointing movements towards that same object. More recent theories state that dorsal parietal spatial representations subserve visuomotor processing, whereas temporal lobe representations subserve memory and cognition. Therefore, it may be hypothesized that parietal egocentric representations, responsible for movement control, are not influenced by irrelevant allocentric cues, whereas ventral representations are. In an event-related functional magnetic resonance imaging study, subjects judged target bar locations relative to their body (egocentric task) or a background bar (allocentric task). Activity in the superior parietal lobule (SPL) was shown to increase during egocentric judgments, but not during allocentric judgments. The superior temporal gyrus (STG) shows a negative BOLD response during allocentric judgments and no activation during egocentric judgments. During egocentric judgments, the irrelevant background influenced activity in the posterior commissure and the medial temporal gyrus. SPL activity was unaffected by the irrelevant background during egocentric judgments. Sensitivity to spatial perceptual biases is apparently limited to occipito-temporal areas, subserving the observed biased cognitive reports of location, and is not found in parietal areas, subserving unbiased goal-directed actions

    fMRI guided rTMS evidence for reduced left prefrontal involvement after task practice

    Get PDF
    Contains fulltext : 130274.pdf (publisher's version ) (Open Access)Introduction: Cognitive tasks that do not change the required response for a stimulus over time ('consistent mapping') show dramatically improved performance after relative short periods of practice. This improvement is associated with reduced brain activity in a large network of brain regions, including left prefrontal and parietal cortex. The present study used fMRI-guided repetitive transcranial magnetic stimulation (rTMS), which has been shown to reduce processing efficacy, to examine if the reduced activity in these regions also reflects reduced involvement, or possibly increased efficiency. Methods: First, subjects performed runs of a Sternberg task in the scanner with novel or practiced target-sets. This data was used to identify individual sites for left prefrontal and parietal peak brain activity, as well as to examine the change in activity related to practice. Outside of the scanner, real and sham rTMS was applied at left prefrontal and parietal cortex to examine their involvement novel and practiced conditions. Results: Prefrontal as well as parietal rTMS significantly reduced target accuracy for novel targets. Prefrontal, but not parietal, rTMS interference was significantly lower for practiced than novel target-sets. rTMS did not affect nontarget accuracy, or reaction time in any condition. Discussion: These results show that task practice in a consistent environment reduces involvement of the prefrontal cortex. Our findings suggest that prefrontal cortex is predominantly involved in target maintenance and comparison, as rTMS interference was only detectable for targets. Findings support process switching hypotheses that propose that practice creates the possibility to select a response without the need to compare with target items. Our results also support the notion that practice allows for redistribution of limited maintenance resources.11 p

    Neural and Temporal Dynamics Underlying Visual Selection for Action

    No full text
    Contains fulltext : 90042.pdf (publisher's version ) (Closed access)The present study investigated the selection for action hypothesis, according to which a subject's action intention to perform a movement influences the way in which visual information is being processed. Subjects were instructed in separate blocks either to grasp or to point to a three-dimensional target-object and event-related potentials were recorded relative to stimulus onset. It was found that grasping compared with pointing resulted in a stronger N1 component and a subsequent selection negativity, which were localized to the lateral occipital complex. These effects suggest that the intention to grasp influences the processing of action-relevant features in ventral stream areas already at an early stage ( e. g., enhanced processing of object orientation for grasping). These findings provide new insight in the neural and temporal dynamics underlying perception-action coupling and provide neural evidence for a selection for action principle in early human visual processing

    Interactions between ego- and allocentric neuronal representations of space

    Get PDF
    In the primate brain, visual spatial representations express distances of objects with regard to different references. In the parietal cortex, distances are thought to be represented with respect to the body (egocentric representation) and in superior temporal cortices with respect to other objects, independent of the observer (allocentric representation). However, these representations of space are interdependent, complicating such distinctions. Specifically, an object's position within a background frame strongly biases egocentric position location judgments. This bias, however, is absent for pointing movements towards that same object. More recent theories state that dorsal parietal spatial representations subserve visuomotor processing, whereas temporal lobe representations subserve memory and cognition. Therefore, it may be hypothesized that parietal egocentric representations, responsible for movement control, are not influenced by irrelevant allocentric cues, whereas ventral representations are.\ud \ud In an event-related functional magnetic resonance imaging study, subjects judged target bar locations relative to their body (egocentric task) or a background bar (allocentric task). Activity in the superior parietal lobule (SPL) was shown to increase during egocentric judgments, but not during allocentric judgments. The superior temporal gyrus (STG) shows a negative BOLD response during allocentric judgments and no activation during egocentric judgments. During egocentric judgments, the irrelevant background influenced activity in the posterior commissure and the medial temporal gyrus. SPL activity was unaffected by the irrelevant background during egocentric judgments. Sensitivity to spatial perceptual biases is apparently limited to occipito-temporal areas, subserving the observed biased cognitive reports of location, and is not found in parietal areas, subserving unbiased goal-directed actions. \ud \u
    corecore