208 research outputs found

    Wind-Tunnel Tests of an NACA 44R-Series Tapered Wing with a Straight Trailing Edge and a Constant-Chord Center Section

    Get PDF
    As part of a general investigation in the NACA 19-foot pressure tunnel to determine stall characteristics and effectiveness of high-lift devices on wings of various sections, tests were made of a tapered. wing having NACA 44R-series airfoil sections. Lift, drag, pitching-moment, and stall characteristics were determined at a Reynolds number of 4,850,000 for the plain wing and for the wing with partial-and with full-span split flaps. The stall progressed slowly over The plain wing; a gradual loss of lift for angles of attack up to and beyond that for the maximum lift coefficient resulted. As Compared with the stall of the plain wing, the initial stall of the wing with either partial-span or full-span flaps deflected occurred at a higher angle of attack and the stall progressed much more rapidly. The maximum lift coefficients at a Reynolds number of 4,850,000 were 1.35 for the plain wing, 2.25 for the wing with partial-span flaps at 60 deg, and 2.67 for the wing with full-span flaps at 60 deg. The positions of the aerodynamic center, in terms of mean chords back of the leading edge of the root section, were approximately 0.458 with no flaps, 0.483 with partial-span flaps at 60 deg, and 0.498 with full-span flaps at 60 deg

    Wind-Tunnel Investigation of an NACA Low-Drag Tapered Wing with Straight Trailing Edge and Simple Split Flaps, Special Report

    Get PDF
    An investigation was conducted in the NACA 19-foot pressure wind tunnel of a tapered wing with straight railing edge having NACA 66 series low-drag airfoil sections and equipped with full-span and partial-span simple split flaps. The airfoil sections used were the NACA 66,2-116 at the root and the 66,2-216 at the tip. The primary purpose of the investigation was to determine the effect of the split flaps on the aerodynamic characteristics of the tapered wing. Complete lift, drag, and pitching-moment coefficients were determined for the plain wing and for each flap arrangement through a Reynold number range of 2,600,000 to 4,600,000. The results of this investigation indicate that values of maximum lift coefficient comparable to values obtained on tapered wings with conventional sections and similar flap installations can be obtained from wings with the NACA low-drag sections. The increment of maximum lift due to the split flap was found to vary somewhat with Reynold number over the range investigated. The C(sub L)max of the wing alone is 1.49 at a Reynolds number of 4,600,000; whereas with the partial-span simple split flap it is 2.22 and with the full-span arrangement, 2.80. Observations of wool tufts on the wing indicate that the addition of split flaps did not appreciable alter the pattern of the stall; even though the stall did occur more abruptly than with the wing alone

    Wind-Tunnel Investigation of an NACA 66,2-216 Low-Drag Wing with Split Flaps of Various Sizes, Special Report

    Get PDF
    An investigation was conducted in the NACA 19-foot pressure wind tunnel of a rectangular wing having NACA 66, 2-216 low-drag airfoil sections and various sizes of simple split flaps. The purpose of the investigation was, primarily, to determine the influence of these flap installations on the aerodynamic characteristics of the wing. Complete lift, drag, and pitching-moment characteristics were determined for a range of test Reynolds numbers from about 2,600,000 to 4,600,000 for each of the installations and for the plain wing. The results of this investigation indicate that values of maximum lift coefficient similar to those of wings with conventional airfoil sections and split flaps can be expected of wings having the NACA 66,2-216 low-drag sections. The increment of maximum lift due to the split flap was found to be practically independent of the Reynolds number over the range investigated. The optimum split flap on the basis of maximum lift appears to have a chord about 20% of the wing chord and a deflection of 60 degrees. The C(sub L) max of the wing with the 0.20c partial-span flap deflected 60 degrees is 2.07 at a Reynolds number of 4,600,000 while with the full-span flap it is approximately 2.53; the increment of the maximum lift coefficient due to the flap is approximately proportional to the flap span. Although the addition of a split flap tends to hasten the stall and to cause it to occur more abruptly, little change in pattern is evidenced by observations of the behavior of wool tufts on the wing

    Summary and Analysis of Horizontal-Tail Contribution to Longitudinal Stability of Swept-Wing Airplanes at Low Speeds

    Get PDF
    Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25

    Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data

    Get PDF
    A method is presented for calculating wing characteristics by lifting-line theory using nonlinear section lift data. Material from various sources is combined with some original work into the single complete method described. Multhopp's systems of multipliers are employed to obtain the induced angle of attack directly from the spanwise lift distribution. Equations are developed for obtaining these multipliers for any even number of spanwise stations, and values are tabulated for 10 stations along the semispan for asymmetrical, symmetrical, and antisymmetrical lift distributions. In order to minimize the computing time and to illustrate the procedures involved, simplified computing forms containing detailed examples are given for symmetrical lift distributions. Similar forms for asymmetrical and antisymmetrical lift distributions, although not shown, can be readily constructed in the same manner as those given. The adaptation of the method for use with linear section lift data is also illustrated. The adaptation has been found to require less computing time than most existing methods

    Priming in the Microbial Landscape: Periphytic Algal Stimulation of Litter-Associated Microbial Decomposers

    Get PDF
    Microbial communities associated with submerged detritus in aquatic ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes, including algae, bacteria, protozoa, and fungi. Recent studies have documented increased rates of plant litter mass loss when periphytic algae are present. We conducted laboratory and field experiments to assess potential metabolic interactions between natural autotrophic and heterotrophic microbial communities inhabiting submerged decaying plant litter of Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either exposed to natural sunlight or placed under experimental canopies that manipulated light availability and growth of periphytic algae. Litter was collected and returned to the laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria and fungi were rapidly stimulated by exposure to light, thus establishing the potential for algal priming of microbial heterotrophic decay activities. Experimental incubations of decaying litter with 14C‐ and 13C‐bicarbonate established that inorganic C fixed by algal photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal decomposers, is an important and largely unrecognized interaction within the detrital microbial landscape, which may transform our current conceptual understanding of microbial secondary production and organic matter decomposition in aquatic ecosystems

    Effects of Wing and Nacelle Modifications on Drag and Wake Characteristics of a Bomber-Type Airplane Model

    Get PDF
    An investigation of a model of a large four-engine bomber was conducted in the Langley 19-f'oot pressure tunnel to determine the effects of several wing and nacelle modifications on drag characteristics and air flow characteristics at the tail. Leading-edge gloves, trailing-edge extensions, and modified nacelle afterbodies were tested individual ly and in combination. The effects of the various modifications were determined by force tests, tuft observations, and turbulence s1ITveys in the region of the tail. Tests were made with fixed and natural transition on the wing and with propellers operating and propellers off. Most of the tests were con- ducted at a Reynolds number of approximately 2.6 x 106. The results indicated that application of certain of the modifications provided worth-while improvements in the characteristics or the model. The flow over the wing and flaps was improved, the drag was reduced, and the turbulence in the region of the tail was reduced. Trailing-edge extensions were the most effective individual modification in improving the flow over the wing with wing flaps neutral, cowl and intercooler flaps clos ed. Modified nacelle afterbodies were the most effectiv8 individual edification in reducing drag with either fixed or natural transition on the wing; however, trailin6-edge extensions were slightly more effective with fixed transition. Combinations of either leading or trailing-edge extensions and modified afterbodies were more effective than either modification alone. With cowl and intercooler flaps open, trailing-edge extensions with modified afterbodies provided substantial improvement in flow and drag characteristics. With wing flaps deflected, enclosing the flap behind the inboard nacelle within an extended afterbody or cutting the flaps at the nacelle appeared. to be the most promising methods of improving the f low over the flaps and the tail. Although the results of hot-wire-anenometer surveys were not conclusive in regard to buffeting characteristics, the modifications did educe the turbulence at the tail with wing flaps both neutral and deflected. The modifications, as a rule, were favorable to maximum lift. Appreciable reductions in longitudinal stability of the model were caused by addition of leading -edge gloves and tr ailing -edge extensions
    corecore