710 research outputs found

    Auditory brainstem measures and genotyping boost the prediction of literacy: A longitudinal study on early markers of dyslexia

    Get PDF
    Literacy acquisition is impaired in children with developmental dyslexia resulting in lifelong struggle to read and spell. Proper diagnosis is usually late and commonly achieved after structured schooling started, which causes delayed interventions. Legascreen set out to develop a preclinical screening to identify children at risk of developmental dyslexia. To this end we examined 93 preliterate German children, half of them with a family history of dyslexia and half of them without a family history. We assessed standard demographic and behavioral precursors of literacy, acquired saliva samples for genotyping, and recorded speech-evoked brainstem responses to add an objective physiological measure. Reading and spelling was assessed after two years of structured literacy instruction. Multifactorial regression analyses considering demographic information, genotypes, and auditory brainstem encoding, predicted children’s literacy skills to varying degrees. These predictions were improved by adding the standard psychometrics with a slightly higher impact on spelling compared to reading comprehension. Our findings suggest that gene-brain-behavior profiling has the potential to determine the risk of developmental dyslexia. At the same time our results imply the need for a more sophisticated assessment to fully account for the disparate cognitive profiles and the multifactorial basis of developmental dyslexia

    Specific heat and high-temperature series of lattice models: interpolation scheme and examples on quantum spin systems in one and two dimensions

    Full text link
    We have developed a new method for evaluating the specific heat of lattice spin systems. It is based on the knowledge of high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior of the specific heat as well as the ground-state energy. By the choice of an appropriate variable (entropy as a function of energy), a stable interpolation scheme between low and high temperature is performed. Contrary to previous methods, the constraint that the total entropy is log(2S+1) for a spin S on each site is automatically satisfied. We present some applications to quantum spin models on one- and two- dimensional lattices. Remarkably, in most cases, a good accuracy is obtained down to zero temperature.Comment: 10 pages (RevTeX 4) including 11 eps figures. To appear in Phys. Rev.

    Low temperature expansion for the 3-d Ising Model

    Full text link
    We compute the weak coupling expansion for the energy of the three dimensional Ising model through 48 excited bonds. We also compute the magnetization through 40 excited bonds. This was achieved via a recursive enumeration of states of fixed energy on a set of finite lattices. We use a linear combination of lattices with a generalization of helical boundary conditions to eliminate finite volume effects.Comment: 10 pages, IASSNS-HEP-92/42, BNL-4767

    The synaptic ribbon is critical for sound encoding at high rates and with temporal precision.

    No full text
    We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation

    Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach

    Full text link
    We study the low-temperature behavior of a magnetic impurity which is weakly coupled to correlated conduction electrons. To account for conduction electron interactions a diagrammatic approach in the frame of the 1/N expansion is developed. The method allows us to study various consequences of the conduction electron correlations for the ground state and the low-energy excitations. We analyse the characteristic energy scale in the limit of weak conduction electron interactions. Results are reported for static properties (impurity valence, charge susceptibility, magnetic susceptibility, and specific heat) in the low-temperature limit.Comment: 16 pages, 9 figure

    No evidence for dystonia-like sensory overflow of tongue representations in adults who stutter

    No full text
    Persistent developmental stuttering (PDS) disrupts speech fluency in about 1% of adults. Although many models of speech production assume an intact sensory feedback from the speech organs to the brain, very little is actually known about the integrity of their sensory representation in PDS. Here, we studied somatosensory evoked potentials (SEPs) in adults who stutter (AWS), with the aim of probing the integrity of sensory pathways. In addition, we tested the processing of dual sensory input to address a putative link between stuttering and focal dystonia. In 15 AWS (aged 15–55 years; three females) and 14 matched fluent speaking adults (ANS), we recorded SEPs at C5′ and C6′ induced by stimulating separately or simultaneously the tongue or the cheek at the corner of the mouth. We determined latencies (N13, P19, and N27) and peak-to-peak amplitudes (N13-P19, P19-N27). We divided amplitudes from simultaneous stimulation by the sum of those from separate stimulation. Amplitude ratios did not differ between groups, indicating normal processing of dual sensory input. This does not support a clinical analogy between focal dystonia and persistent stuttering. SEP latencies as a measure of transmission speed in sensory pathways were significantly shorter in stuttering subjects than in fluent speaking participants, however, this might have been related to a trend for a height difference between groups, and was not confirmed in a replication dataset. In summary, we did not find evidence for dystonia-like sensory overflow of tongue representations in AWS

    Landscape science: a Russian geographical tradition

    Get PDF
    The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability

    The Occupational Wellbeing of People Experiencing Homelessness

    Get PDF
    This paper reports findings of a study that utilised an occupational perspective to explore how wellbeing was achieved and sustained by the occupations of people experiencing homelessness in Australia. Thirty three in-depth qualitative interviews were conducted with homeless individuals in a regional city in Australia. Data from the interviews were thematically analysed to understand the relationship between wellbeing, as defined by the individual, and the occupations engaged in by people experiencing homelessness. The findings are reported here as three collective narratives that illustrate the experiences of diverse groups within the homelessness population explored in this study. The study demonstrates how occupations go beyond the individual experience and choice; to explore the social and cultural value of occupations as a means to wellbeing. The findings are discussed in relation to three key themes that emerged from the study: survival, self-identity and social connectedness. These three interconnected concepts complement the existing occupational science literature, and offer a preliminary framework for understanding and improving wellbeing for disadvantaged and marginalised people where occupations are restricted by societal forces. The findings support the urgent need to redirect services to support occupational opportunities that are socially and culturally valued and enhance survival, self-identity and connectedness of homeless people

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage
    • …
    corecore