38 research outputs found

    Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder

    Get PDF
    Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD

    Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder

    Get PDF
    Social impairment is one of the major symptoms in multiple psychiatric disorders, including autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut microbiota in social development, but these mechanisms remain unclear. This review focuses on two strategies adopted to elucidate the complicated relationship between gut bacteria and host social behavior. In a top-down approach, researchers have attempted to correlate behavioral abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet (MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social behavior. The combination of both approaches will hopefully pinpoint specific bacterial communities that control host social behavior. Further discussion of how brain development and circuitry is impacted by depletion of gut microbiota is also included. The converging evidence strongly suggests that gut microbes affect host social behavior through the alteration of brain neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any bidirectional communication between the gut and brain and provide alternative therapeutic targets for ASD

    Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder

    Get PDF
    Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal (GI) dysfunction, and altered gut microbiome compositions. Methods: We sought to better understand non-behavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (LC/MS and DMS-MS) with broad panels of identified metabolites. Herein, we present the global metabolome of 231 plasma and 97 fecal samples from a large cohort of children with ASD and typically developing (TD) controls. Results: Differences in amino acid, lipid, and xenobiotic metabolism discriminate ASD and TD samples. Our results implicate oxidative stress and mitochondrial dysfunction, hormone level elevations, lipid profile changes, and altered levels of phenolic microbial metabolites. We also reveal correlations between specific metabolite profiles and clinical behavior scores. Furthermore, a summary of metabolites modestly associated with GI dysfunction in ASD are provided, and a pilot study of metabolites that can be transferred via fecal microbial transplant into mice were identified. Conclusions: These findings support a connection between metabolism, GI physiology, and complex behavioral traits, and may advance discovery and development of molecular biomarkers for ASD

    Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD

    Gut microbial molecules in behavioural and neurodegenerative conditions

    No full text
    Mounting evidence suggests that the gut microbiome impacts brain development and function. Gut–brain connections may be mediated by an assortment of microbial molecules that are produced in the gastrointestinal tract, which can subsequently permeate many organs, including sometimes the brain. Studies in animal models have identified molecular cues propagated from intestinal bacteria to the brain that can affect neurological function and/or neurodevelopmental and neurodegenerative conditions. Herein, we describe bacterial metabolites with known or suspected neuromodulatory activity, define mechanisms of signalling pathways from the gut microbiota to the brain and discuss direct effects that gut bacterial molecules are likely exerting on specific brain cells. Many discoveries are recent, and the findings described in this Perspective are largely novel and yet to be extensively validated. However, expanding research into the dynamic molecular communications between gut microorganisms and the CNS continues to uncover critical and previously unappreciated clues in understanding the pathophysiology of behavioural, psychiatric and neurodegenerative diseases

    Gut microbial molecules in behavioural and neurodegenerative conditions

    No full text
    Mounting evidence suggests that the gut microbiome impacts brain development and function. Gut–brain connections may be mediated by an assortment of microbial molecules that are produced in the gastrointestinal tract, which can subsequently permeate many organs, including sometimes the brain. Studies in animal models have identified molecular cues propagated from intestinal bacteria to the brain that can affect neurological function and/or neurodevelopmental and neurodegenerative conditions. Herein, we describe bacterial metabolites with known or suspected neuromodulatory activity, define mechanisms of signalling pathways from the gut microbiota to the brain and discuss direct effects that gut bacterial molecules are likely exerting on specific brain cells. Many discoveries are recent, and the findings described in this Perspective are largely novel and yet to be extensively validated. However, expanding research into the dynamic molecular communications between gut microorganisms and the CNS continues to uncover critical and previously unappreciated clues in understanding the pathophysiology of behavioural, psychiatric and neurodegenerative diseases
    corecore