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Abstract 

Social impairment is one of the major symptoms in multiple psychiatric disorders, including 

autism spectrum disorder (ASD). Accumulated studies indicate a crucial role for the gut 

microbiota in social development, but these mechanisms remain unclear. This review focuses on 

two strategies adopted to elucidate the complicated relationship between gut bacteria and host 

social behavior. In a top-down approach, researchers have attempted to correlate behavioral 

abnormalities with altered gut microbial profiles in rodent models of ASD, including BTBR mice, 

maternal immune activation (MIA), maternal valproic acid (VPA) and maternal high-fat diet 

(MHFD) offspring. In a bottom-up approach, researchers use germ-free (GF) animals, antibiotics, 

probiotics or pathogens to manipulate the intestinal environment and ascertain effects on social 

behavior. The combination of both approaches will hopefully pinpoint specific bacterial 

communities that control host social behavior. Further discussion of how brain development and 

circuitry is impacted by depletion of gut microbiota is also included. The converging evidence 

strongly suggests that gut microbes affect host social behavior through the alteration of brain 

neural circuits. Investigation of intestinal microbiota and host social behavior will unveil any 

bidirectional communication between the gut and brain and provide alternative therapeutic targets 

for ASD. 

Keywords: Autism spectrum disorder (ASD); Gut microbiota; Gut-brain axis; Social behavior; 

Germ-free (GF) 
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INTRODUCTION 

Social behavior deficit is a primary symptom of autism spectrum disorder (ASD), combined with 

restricted interests and repetitive behaviors. So far, there is no effective therapy for the social 

behavior deficit in ASD, partly because etiology of the disorder is still not clear. ASD is an early 

onset, neurodevelopmental disorder that is predominately genetic and more common in males. Its 

prevalence has increased dramatically in the past 50 years, with recent estimates rising to 1 in 68 

children, although controversy about whether this trend is simply increased diagnosis exists 

(Investigators, 2014). The pattern of increased ASD diagnosis is reminiscent of the recent 

increase of allergies and autoimmune diseases, which according to the hygiene hypothesis, can be 

attributed to alterations in the microbiota due to an industrialized lifestyle, such as the rise in 

antibiotics, and environmental hygiene conditions (Bach, 2002). This parallel timing raises the 

possibility that overly hygienic environments and the decrease of microbial diversity in humans 

might be associated with the increasing prevalence of ASD (Becker, 2007). In addition, 

gastrointestinal (GI) complications and an altered gut microbiome are common comorbidities in 

ASD (Adams et al., 2011; Buie et al., 2010; Coury et al., 2012; Parracho et al., 2005). A small 

analysis of infant microbiomes has suggested that gut microbial composition could predict 

cognitive performance, including communicative behavior (Carlson et al., 2017). These 

associations have spurred investigations over the past decade into the intertwined relationships 

between the gut microbiota, brain, and behavior. Numerous review articles have extensively 

discussed this gut-brain hypothesis, focusing on the beneficial and detrimental consequences of 

bi-directional communication between systems. However, the specific roles of the gut microbiota 

in the social deficiencies in ASD are still not well understood. 

 

Throughout the classes of life, examples of the microbiota affecting social behavior abound. Even 

in cell culture, single-celled chenoflagellates begin to cluster in the presence of certain bacteria 
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(Alegado et al., 2012).  From flies to hyenas, mating preference can be determined by the 

microbiota (Sharon et al., 2010; Theis et al., 2013). Infection by a certain virus can cause bees to 

be aggressive and sharing gut microbiota between nest mates can protect against it (Koch and 

Schmid-Hempel, 2011). In baboons and chimpanzees, the microbiota is defined by social 

structure and interaction, and it is unlikely that the effects are not reciprocal on primate behavior 

as well (Moeller et al., 2016; Tung et al., 2015). In fact, in the hologenome theory of evolution, 

the host and all of its associated microbes are considered a single unit of selection in evolutionary 

change (Brucker and Bordenstein, 2013). Defining the mechanisms involved in such 

phenomenon has remained elusive for the gut-brain field, in part due to the complexity of the 

microbial community. The mammalian GI tract harbors a unique ecosystem, with hundreds to 

thousands of species of bacteria packed denser than any other known ecosystem (Human 

Microbiome Project, 2012). Exchange of microbiota through social interaction is advantageous 

for the host in numerous ways, such as improved resistance to pathogens, diversification of 

metabolic functions, and increased development of the immune system (Browne et al., 2017). It 

is of interest to understand the function of each bacteria to host social behavior. However, there 

are at least over 500 species symbiotically live in mouse gut (Xiao et al., 2015). It is extremely 

difficult to screen the functionality for each individual bacteria, so thus far it has been a struggle 

to define the specific qualities of the microbiota that directly affect social behavior, in animals or 

humans.  

 

This review will focus on the literature using rodent models to tackle questions of gut microbes’ 

link to social behavior deficit in ASD. Social behavior is an interaction among conspecific 

individuals and can be classified into several different forms- social approach/investigation 

behavior, aggressive behavior, social defeat, social avoidance behavior, and sociosexual behavior 

etc (Sandi and Haller, 2015). Impairment of social investigation and social novelty behavior are 
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the most common and consistent phenotypes in animals without gut microbiota and are also the 

convergent phenotypes among different mouse models of ASD. These are typically tested using 

the 3-chamber social and reciprocal social interaction tests, which are performed by allowing a 

subject mouse to explore an area containing a novel mouse over an object or a familiar mouse, 

and by scoring the social interactions between a subject and novel mouse in a cage, respectively 

(Silverman et al., 2010). Although a social behavior deficit can be observed in other psychiatric 

disorders in addition to ASD, such as social phobia, schizophrenia, and depression, this review 

will focus on ASD-related research due to the availability of literature studying the gut 

microbiota in ASD. 

 

These behavioral paradigms can be tested using either a top-down or bottom-up approach (Fig. 

1A). In a top-down approach, researchers focus on the GI abnormalities in mouse model of ASD 

and whether these abnormalities correlate with the gut microbial compositions and behavior 

phenotypes. In bottom-up approach, researchers consider the gut as a vessel and are able to 

exploit extreme conditions that would be impossible in humans, such as gnotobiotic animals that 

allow complete control over which, if any, microbes are colonizing the gut. Additionally, 

antibiotics, probiotics and pathogens can be used as tools to eliminate or supplement the gut 

microbiota to validate their functional effects on the host. In such studies, various brain regions 

are affected by depletion of gut microbiota. Likewise, these brain regions have been implicated as 

control hubs for social behavior. Understanding the contributions of gut microbes to host 

behavior will advance the current therapeutic strategy for ASD and provide alternative and safe 

practices to ameliorate the disorder.  

 

TOP-DOWN APPROACH: RODENT MODEL OF RISK FACTORS FOR ASD WITH 

GUT MICROBIAL DYSBIOSIS 

This article is protected by copyright. All rights reserved.
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Most cases of ASD are idiopathic, with strong evidence that environmental factors are involved 

(Modabbernia et al., 2017). Because there is no definitive pathology or a single genetic mutation 

for ASD, animal models mostly rely on the display of behavioral abnormalities that correspond to 

the core symptoms of ASD. In this section, we review four models of ASD that not only exhibit 

social impairment or communication deficit, but also show gut microbial dysbiosis. These models 

include one genetic model of ASD- BTBR; and three non-genetic models for ASD- maternal 

immune activation (MIA), valproic acid (VPA) and maternal high-fat diet (MHFD)(Fig. 1A; 

Table 1).  

 

Various studies have used a top-down approach to ask whether the animal model of ASD 

possesses differential gut microbiota and whether these alterations in gut microbiota contribute to 

social deficits. Several reports indicate that children with ASD have been found to have different 

microbiota than neurotypical children (Adams et al., 2011; De Angelis et al., 2013; Finegold, 

2011; Krajmalnik-Brown et al., 2015; Parracho et al., 2005; Williams et al., 2012). These 

changes in the microbiota inevitably lead to changes in gut and serum metabolites as well as 

other systems such as immune changes and GI symptoms.  Interestingly, most of the ASD 

models we discussed in this review show a “leaky gut” phenotype, where the intestinal epithelial 

barrier is compromised (Coretti et al., 2017; Hsiao et al., 2013). Whether the leaky gut phenotype 

is a universal feature in mouse models of ASD that contributes to the etiology of social 

impairment is still unknown. A complementary analysis of whether a leaky gut phenotype is 

sufficient to result in ASD-like social behaviors is warranted. Although the leaky gut hypothesis 

is promising, more work will need to be done in order to elucidate the cause–effect relationship.  

 

BTBR 

This article is protected by copyright. All rights reserved.
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BTBR is an inbred mouse strain with the full spectrum of ASD-like behavioral phenotypes, the 

causes of which remain unclear. Although striking brain pathologies are obvious in this model, 

with reduced hippocampal commissure and absent corpus callosum, why and how the BTBR 

strain develops ASD-like behaviors and neuropathologies are open questions (Wahlsten et al., 

2003). BTBR was first found to be associated with autism when researchers ran a series of ASD 

behavioral tests in 10 different inbred strains (Moy et al., 2007). BTBR mice showed decreased 

anxiety in a standard test, the elevated-plus maze, but also decreased sociability in 3-chamber 

social test. Interestingly, the ability to differentiate novel and old strangers is normal in BTBR 

mouse, indicating there is no deficit in social recognition in the BTBR mouse (Moy et al., 2007). 

Later, a more comprehensive social behavior tests, including juvenile play test and reciprocal 

social interaction, were performed to examine the social behavior in BTBR strain (McFarlane et 

al., 2008). BTBR mice displayed social impairment in most social tests. Moreover, BTBR mice 

emit an unusual pattern of ultrasonic vocalizations (USVs) during infancy (Scattoni et al., 2008) 

and fewer USVs in adulthood when presence with social cues (Wohr et al., 2011). This evidence 

strongly suggests that BTBR serves as a suitable model to study the social development in ASD. 

 

The gut microbiota of BTBR mice was recently profiled in young and aged animals (Golubeva et 

al., 2017; Klein et al., 2016; Newell et al., 2016). Two reports focused on the caecal and fecal 

microbiota during the young adult stage (7 weeks of age). They found that, compared to its wild-

type genetic background strain, C57BL/6 mice, microbiota profiles were dissimilar in both fecal 

and caecal samples, and the total bacterial abundance was decreased in caecal but not fecal 

samples in BTBR male mice (Klein et al., 2016). The common features of microbiota in BTBR 

mice are an increase in Akkermansia muciniphila, and a decrease in Bifidobacterium spp., 

Clostridium cluster XI, Enterobacteriaceae, and Methanobrevibacter spp. Additionally, caecal 

microbiota in BTBR mice have lower levels of Bacteroides/Prevotella spp. and Clostridium 
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cluster I (Klein et al., 2016; Newell et al., 2016). Furthermore, one recent report analyzed the 

caecal microbiota in BTBR mice at adult stage (14 weeks of age)(Golubeva et al., 2017). 

Interestingly, they found that Akkermansia is increased, but Bifidobacterium and 

Lachnospiraceae  (Clostridiales) are decreased in BTBR mice. In addition, they also identify that 

the reduction of Rikenella, Parabacteroides, Odoribacter, Desulfovibrio, Blautia and 

Bifidobacterium species and the increase of S24–7 family, Bilophila and Bacteroides in the 

cecum of BTBR mice are associated with the sociability, anxiety-like behaviors and repetitive 

behaviors (Golubeva et al., 2017). 

 

Another group found that in aged mice (12 months old), the C57BL/6 and BTBR fecal 

microbiota differ as well. Bacteroidetes and Firmicutes were the major contributing factors 

driving the difference of gut microbiota profiling (Coretti et al., 2017). The relative abundance of 

identified operational taxonomic units (OTUs) classified at bacterial phylum level was not 

different between male BTBR and male C57BL/6 mice. However, several microbial changes 

were identified at the level of genus: in male mice, BTBR samples were increased in Bacteroides, 

Parabacteroides, Lacobacillus, Coprobacillus, and Helicobacteraceae, but decreased in 

Dehalobacterium, Ruminococcus, and Desulfovibrio (Coretti et al., 2017). Interestingly, the 

BTBR mice have deficits in intestinal integrity. The intestinal tight junction proteins- Ocln and 

Tjp1 are reduced in male BTBR mice while comparing to C57BL/6 mice (Coretti et al., 2017). In 

addition, the difference of gut microbiota in BTBR mice could be further associated with the host 

metabolites, gut permeability, inflammatory cytokines and behavioral deficits. The effect of sex 

and diet to gut microbiota are also in a notion in BTBR mice (Coretti et al., 2017; Klein et al., 

2016; Newell et al., 2016). These results indicate that the gut microbiota in BTBR mice is indeed 

different from C57BL/6 mice. The changes remain pronounced in aged mice between the two 
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strains. Causative links between the altered microbiota, brain, and behavior in BTBR mice have 

not been established. 

 

Maternal Immune Activation (MIA) 

Epidemiological studies of maternal databases have highlighted a correlation between infection 

during pregnancy and ASD (Atladottir et al., 2010; Gorrindo et al., 2012; Zerbo et al., 2015). In 

the MIA mouse model of ASD, the maternal immune response is activated during gestation with 

an immunogen such as polyinosinic:polycytidylic acid (polyI:C), a viral mimic (Boksa, 2010; 

Chow et al., 2016; Meyer and Feldon, 2010; Meyer et al., 2005; Patterson, 2009). As a result of 

the downstream inflammatory cytokine response, the exposed offspring grow up with 

comprehensive behavioral abnormalities that are similar to ASD and schizophrenia (Estes and 

McAllister, 2016; Patterson, 2011). Overall, MIA offspring show lower social behavior observed 

in the 3-chamber social test, and they display altered USV (Careaga et al., 2017; Choi et al., 

2016b; Hsiao et al., 2012; Hsiao et al., 2013; Malkova et al., 2012; Schwartzer et al., 2013; Wu et 

al., 2017). 

 

Similar to the common GI comorbidities of people with ASD, MIA offspring display decreased 

intestinal barrier integrity and an altered gut microbiota (Hsiao et al., 2013). Variations in OTUs 

within the classes Clostridia and Bacteroidia account for most of the dysbiosis in the fecal 

samples of these offspring. OTUs from various bacterial families were enriched in MIA samples, 

including Lachnospiraceae, Porphyromonadaceae, Prevotellaceae, unclassified Bacteriodales, 

while others were higher in the control samples, such as Ruminococcaceae, Erysipelotrichaceae, 

and Alcaligenaceae. Interestingly, when MIA offspring are treated with a live bacterial strain, 

Bacteroides (B.) fragilis, fecal levels of OTUs from the Lachnospiraceae family are restored and 

several ASD behavioral abnormalities are normalized. However, social behavior is unaffected by 
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this treatment and corresponding change in the microbiota (Hsiao et al., 2013). Further work by 

Kim, et al. has shown that the MIA model is dependent on the presence of IL-17 inducing 

microbial species. Colonization of female mice with segmented filamented bacteria (SFB) or a 

mix of human commensal bacteria known to promote an IL-17 response leads to exacerbated 

ASD-like phenotypes in MIA offspring, while the absence of these microbes inducing IL-17 

limits the effects of MIA (Kim et al., 2017).  

 

Multiple groups have worked to defined the mechanisms of the MIA model, and its links to the 

microbiota. For instance, MIA dysregulates genes associated with ASD, such as neurogenesis 

pathways and early brain development (Lombardo et al., 2017). Offspring shows cortical 

abnormalities, altered synaptic proteome, altered synaptic organization, and altered 

neurotransmitter levels (Gyorffy et al., 2016; Kim et al., 2017; Kirsten et al., 2012; Pendyala et 

al., 2017). Furthermore, cytokine levels in the gut and brain (Garay et al., 2013; Hsiao et al., 2013; 

Pendyala et al., 2017; Wu et al., 2015; Wu et al., 2017) and the microglia transcriptome (Mattei et 

al., 2017) are involved. 

 

Understanding the connections between these mechanistic insights, specific social behavioral 

abnormalities, and the gut microbiota will be crucial to improving therapeutics. Multiple groups 

have explored the possibility of treating social deficits with diet or oral drugs that could be 

functioning through or acting on the microbial community. Oral vitamin D and poly unsaturated 

fatty acids in the maternal diet improved social outcome for MIA offspring (Vuillermot et al., 

2017; Weiser et al., 2016). Treatment in offspring directly with poly unsaturated fatty acids, a 

ketogenic diet, minocycline, and antipurinic therapy also improved social interactions (Fortunato 

et al., 2017; Li et al., 2015; Mattei et al., 2017; Naviaux et al., 2014; Ruskin et al., 2017).  

This article is protected by copyright. All rights reserved.
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Whether these molecules have direct effects on the nervous system or are mediated by the 

microbiota will be an interesting question to answer with further work.  

 

Valproic acid (VPA) 

Prenatal exposure to valproic acid, an antiepileptic and mood stabilizing drug, is a significant risk 

factor for the development of cognitive defects and ASD in humans, including but not limited to 

social developmental delay, deficits in social functioning, and impaired communication (Bromley 

et al., 2013; Christensen et al., 2013; Nadebaum et al., 2011). VPA administration in rodents 

results in ASD-like social tendencies in the offspring (Dufour-Rainfray et al., 2010). A decrease 

in social play and reciprocal social behavior was first observed in rats (Schneider and Przewlocki, 

2005). Since then more groups have observed that in both rats and mice, VPA exposure 

consistently decreases sociability (Kim et al., 2014; Kim et al., 2011; Moldrich et al., 2013; 

Roullet et al., 2010). Additionally, VPA exposure diminishes olfactory discrimination, which can 

be related to social recognition and development (Bienenstock et al., 2017; Melo et al., 2006; 

Roullet et al., 2010; Terry and Johanson, 1996).  

 

In spite of the fact that VPA is a short-chain fatty acid (SCFA), a class of molecules under 

scrutiny in connection to the gut microbiota and host health, the gut microbiota of children 

exposed to VPA in utero has yet to be characterized. In fact, thus far only one study in mice has 

compared the gut microbiota between VPA-exposed and control offspring (de Theije et al., 

2014b). de Theije et. al observed at the phyla level a decrease in Bacteroidetes and an increase in 

Firmicutes in VPA offspring. Such a shift is seen in other disease states such as obesity (Ley et 

al., 2006). At the order level, the VPA microbiota had higher levels of Clostridiales and 

Desulfovibraionales, echoing observations in some human ASD studies (Kang et al., 2013; Louis, 

2012).  
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At the OTU level, those assigned to the genera Alistipes, Eterorhabdus, Mollicutes, and 

Erysipelotrichales were especially associated with male VPA offspring. Social behavior and the 

gut-produced neurotransmitter serotonin were also lower in male offspring, and Alistipes and 

Erysipelotrichales have been speculated to affect serotonin levels (de Theije et al., 2014a). 

Although no particular taxa were correlated with social behavior in this work, gut microbiota 

have been shown to be a critical regulator of serotonin production and serotonin increases 

sociability in a separate mouse model of ASD (Nakai et al., 2017; Yano et al., 2015). Further 

work in this area could reveal direct connections between specific bacteria and neurotransmitters, 

along with their effects on social behavior. 

 

The same study also found that the altered VPA microbiota correlated with increased butyrate, 

especially in male animals, and butyrate was inversely correlated with social behavior. However, 

precise levels or ratios of particular SCFAs are likely important, as levels of lactic acid were 

positively associated with social behavior (de Theije et al., 2014b). Furthermore, social deficits in 

offspring exposed to VPA, which itself is a potent HDAC inhibitor, can persist in the subsequent 

generation, indicating that epigenetic mechanisms are possibly at play (Choi et al., 2016a).  

 

Maternal high-fat diet (MHFD) 

Maternal obesity during pregnancy is associated with neurodevelopmental disorders and social 

deficits. In epidemiological studies, maternal metabolic conditions such as obesity increase the 

risk of ASD in children (Krakowiak et al., 2012; Lyall et al., 2013), and in animal models, 

MHFD-induced obesity causes ASD-like behavioral phenotypes in offspring (Buffington et al., 

2016; Kang et al., 2014). In fact, causal relationships between MHFD, gut microbiota, brain 

circuitry and social behavior in offspring have been found. MHFD causes microbial dysbiosis in 
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the gut and a reduction in social interaction, sociability and social novelty in the mice offspring 

by testing with reciprocal social interaction and 3-chamber social test. 

 

MHFD affects neuronal functions through multiple mechanisms. For example, dietary 

components regulate maternal metabolism, which interacts with the neuroendocrine pathway to 

perturb the programming of fetal brain circuitry (Sullivan et al., 2015). Moreover, several studies 

indicate that MHFD and maternal obesity could alter the gut microbiota in offspring of both 

humans (Chu et al., 2016; Galley et al., 2014) and animal models (Ma et al., 2014). Since the gut 

microbiota interacts with the brain, MHFD-induced changes in the gut microbiota could be an 

important mediator of atypical neurodevelopment in this model. Interestingly, transfer of 

microbiota from regular maternal diet to MHFD mice by co-housing could rescue the social 

deficit observed in MHFD offspring. Mechanistically, the study found that MHFD causes defects 

in ventral tegmental area (VTA) dopaminergic neuron plasticity and a reduction of oxytocin
+
 

cells in the hypothalamus.  

 

Analyzing the gut microbiota by unweighted analyses of Unifrac distances showed pronounced 

differences in the structure of the bacterial communities between MHFD and maternal regular 

diet treated offspring. The diversity of microbiota in MHFD offspring was decreased while 

comparing to maternal regular diet treated offspring. Metagenomic shotgun sequencing revealed 

that the abundance of several bacterial species was reduced in MHFD fecal sample (>2-fold), 

including Lactobacillus (L.) reuteri (>9-fold reduction), Parabacteroides distasonis, 

Helicobacter hepaticus, B. uniformis. Interestingly, L. reuteri treatment is able to rescue 

sociability and social novelty in MHFD offspring, as well as the associated deficit in synaptic 

plasticity and molecular phenotypes in the brain. The effect is specific to MHFD offspring, 

because only MHFD offspring shows defective social behavior compared to the maternal regular 
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diet offspring; L. reuteri treatment does not change sociability or social novelty in maternal 

regular diet treated offspring (Buffington et al., 2016).  

 

The effect of MHFD on social behavior could be complicated and intertwine with other 

environmental factors. One study suggests that MHFD modulates early-life stress in maternal 

separation (MS) model (Rincel et al., 2016). MS has been shown to alter colonic microbiota, 

induce anxiety-like behavior in a microbiota-dependent manner (De Palma et al., 2015) and 

decrease social interaction (Rincel et al., 2016). However, MHFD could normalize the social 

deficit caused by MS, suggesting that maternal nutrition could affect offspring behavior (Rincel 

et al., 2016). The mechanism is highly likely to be through the gut-brain axis, because both MS 

and MHFD affected the gut microbiota (Buffington et al., 2016; De Palma et al., 2015). Together, 

these evidences highlight the microbiota as a mechanism by which MHFD modulates social 

communication development.  

 

In summary, ASD is a multifaceted neurodevelopmental disorder where MIA combined with 

environmental risk factors and/or genetic mutations can lead to a variety of neurological 

conditions (Schaafsma et al., 2017). In addition to allowing the study of the altered microbiota in 

ASD, these models provide interesting possibilities to combine genetic and environmental 

models. For example, inducing MIA in the BTBR mouse will expand into the complexity that 

potentially occurs in human ASD (Schwartzer et al., 2013). In fact, MIA is worse in combination 

with risk alleles (Abazyan et al., 2010). MIA is likely one part of a multifaceted 

neurodevelopmental onslaught that if combined with environmental risk factors and/or genetic 

mutations can lead to a variety of neurological conditions (Knuesel et al., 2014). 
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BOTTOM UP APPROACH: WHAT DO WE LEARN FROM BACTERIAL 

INTERVENTION STUDIES IN SOCIAL DEVELOPMENT? 

Gnotobiotic animals and antibiotic treatments have become powerful tools to examine the 

physiological, immunological and behavioral features that are impacted by gut microbiota (Fig. 

1B). Total deprivation of any microbiota (termed germ-free) during the entire lifespan of an 

animal allows the study of bacterial colonization effects in a controlled, albeit extreme, 

environment. Mono-colonization of a single bacterial species illuminates the effect of specific 

bacteria to the host. Manipulation of complex gut microbiota by antibiotics gives researchers the 

flexibility to control the microbes’ presence or absence in a temporal fashion. Probiotic 

supplements provide a way to understand how a single bacterial species changes the microbial 

community and the physiological functions of the host. Microbial manipulation is an attractive 

therapeutic target due to its accessibility and its status as a potentially malleable “organ”. In fact, 

once crucial bacterial taxa are better identified and understood, bacterial treatment and transplants, 

or prebiotics (dietary components like fiber that increase growth of certain beneficial bacteria) in 

the diet could be used to select for desired bacterial communities (Buffington et al., 2016; 

Burokas et al., 2017; Hsiao et al., 2013; Kang et al., 2017). 

 

Germ-Free (GF) 

GF animals are carefully controlled to have a total lack of any microbes in or on their bodies, and 

they exhibit abnormal social behavior. This illustrates the point that absence of bacterial 

colonization during development exerts a detrimental effect to mouse social behavior (Desbonnet 

et al., 2014). GF Swiss-Webster mice spend more time investigating a novel object than a 

stranger mouse in 3-chamber social test. Further, GF mice showed no preference to a novel 

stranger over a familiar mouse, indicating that GF mice not only displayed impairment of 

sociability, but also social recognition deficit. Colonizing GF mice with normal fecal microbiota 
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during the juvenile stage can reverse the sociability defect. These results suggest that gut 

microbiota play a pivotal role in social development (Desbonnet et al., 2014). However, a report 

with a similar approach found an opposite finding. By testing GF mouse in 3-chamber social test, 

they found that GF mice spent more time investigating the stranger mouse than specific-pathogen 

free (SPF) control group (Arentsen et al., 2015). The conflicting results between the two studies 

could be due to the differences in experimental design- different strain for stimulus mice and 

different age of testing (Arentsen et al., 2015). 

 

Later observations of GF social behavior in C57BL/6 mice supported the conclusion that the lack 

of gut microbiota during development perturbs social development. Social impairment was 

observed in both 3-chamber social and reciprocal social interaction tests, and colonization with a 

normal gut microbiota at 4 but not 8 weeks of age restored social behavior (Buffington et al., 

2016). A social deficit phenotype has also been observed in GF rats in the reciprocal social 

interaction test (Crumeyrolle-Arias et al., 2014).  

 

These studies clearly point out that mice devoid of gut microbiota during their entire lifespan are 

impaired in conspecific social interaction and social preference. The developmental stage for gut 

microbial colonization is also critical for developing social behavior. Later in this review we give 

a comprehensive discussion of potential mechanisms involved for the GF phenotypes described 

above. 

 

Antibiotics 

Broad-spectrum antibiotic cocktails (ABX) provide another way to eliminate gut bacteria, 

mimicking the results seen in GF animals. However, the particular antibiotics used, as well as the 

dosage, schedule, delivery route, and age of mice during ABX administration are all critical 
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factors influencing the outcome of behavioral phenotypes. Therefore, the effect of ABX on 

mouse social behavior is still under debate (Table 2).  

 

Regardless of the inherent variations in study design, ABX treatment during certain perinatal 

stages does appear to affect social behavior. Administration of succinylSulfaThiazole, a 

sulfonamide antibiotic, in the diet starting one month before pregnancy until embryonic day (ED) 

15 decreased rat social behavior in the reciprocal social interaction test (Degroote et al., 2016). 

Treatment of penicillin V in drinking water from ED 12-14 to postnatal 21 days decreased both 

sociability and social novelty in BALB/c mice by 3-chamber social test (Leclercq et al., 2017). 

Another report shows that administration of neomycin trisulfate salt hydrate, bacitracin, pimaricin 

in the drinking water from ED 9-16 did not change the sociability and social novelty behavior in 

the male offspring by 3-chamber social test (Tochitani et al., 2016). In the MIA model, 

vancomycin treatment in mothers prevented USV and social deficit phenotypes (Kim et al., 2017). 

These studies suggest that the perinatal stage is critical for social development, and determining 

the connections between the depletion of certain bacteria sensitive to specific antibiotics, versus 

depletion of the entire community, and the corresponding mechanisms remain to be 

systematically studied in the context of social behavior.  

 

The effect of broad-spectrum ABX treatment post-weaning on social behavior is less studied. 

Applying ampicillin, vancomycin, neomycin, and metronidazol in the drinking water from 

weaning till adulthood produces minimal effect to social memory to Swiss-Webster mice as 

demonstrated by social transmission of food preference test. In this test, a demonstrator mouse is 

allowed to choose between two foods, then later spends time with the testing subject mouse. 

When the testing subject mouse is then allowed to choose between the two foods, it usually picks 

the one the demonstrator mouse liked (cued food). On the contrary, a subject mouse with social 
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deficit would fail to differentiate the two foods, so that the preference to cued food would not be 

significant. Interestingly, ABX treatment decreased the preference to cued food, which was 

consumed by demonstrator mouse, 24 hours after social interaction. But there was no difference 

between control and ABX mice in the preference to cued food immediately after social 

interaction (Desbonnet et al., 2015). Another study showed that there was no change to C57BL/6 

mouse social interaction when orally gavaged with broad-spectrum ABX, including vancomycin, 

neomycin, metronidazol, with ampicillin supplemented in the water. However, the gavage with 

vehicle decreased the social interaction in non-obese diabetic (NOD) mouse and ABX was able 

to normalize the social avoidance behavior that was caused by gavage stress (Gacias et al., 2016). 

Interestingly, selective depletion of the gut microbiota by oral enrofloxacin decreased aggressive 

behavior in hamster, but unchanged the investigation behavior. Female hamsters were more 

susceptible to enrofloxacin treatment. The female aggressive behavior decreased at the first 7 day 

ABX treatment and the effect lasted even after withdraw the enrofloxacin treatment. However, 

male hamsters only showed lower aggressive behavior at the second time ABX treatment. The 

effect did not persist after withdrawal of the ABX treatment. On the contrary, the investigative 

behavior was not changed by enrofloxacin treatment in hamsters (Sylvia et al., 2017). 

 

ABX are a powerful tool to address the role of microbiota in the brain and behavior. Nonetheless, 

ABX could have confounding effects to the host. However, it appears that the effect of oral 

administration of ABX, such as ampicillin and vancomycin, is limited to circulation and does not 

result in increasing the levels of ABX in the brain (Frohlich et al., 2016). Rodents are sensitive 

animals and very vulnerable to stressful handling. The intrinsic behavior could be masked when 

animals faces stressful situation. Therefore, it is crucial to optimize the methods to deliver ABX 

to the animal with a stable and harmless way.  
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Probiotics 

Bacteria that confer benefits on the host are termed probiotics, and those with beneficial effects 

on mental health have been termed psychobiotics (Dinan et al., 2013). In this emerging field, 

only a few have been identified to date, but the complex mammalian gut microbial community is 

replete with functional redundancy (Lozupone et al., 2012). It is possible that entire classes of 

bacteria will be identified that can serve to activate the same mechanisms as known psychobiotics, 

whatever those mechanisms are. However, specificity exists, since in some cases close relatives 

of psychobiotics have been shown to lack activity (Buffington et al., 2016; Perez-Burgos et al., 

2013). There also seems to be specificity for bacteria affecting certain behavioral pathways but 

not others, as seen in the MIA model, where the bacterial strain B. fragilis ameliorates several 

behavioral deficits, such as anxiety, repetitive behavior, and USV during social encounter, but 

does not improve social behavior in the 3-chamber social test (Hsiao et al., 2013).  

 

Most of the published evidence for psychobiotics inducing social behavior is with Lactobacillus 

(L.) spp. reuteri and rhamnosus. In microbiota of MHFD offspring, L. reuteri was the most 

drastically reduced taxa (9-fold). Administering L. reuteri in the drinking water of MHFD 

weanlings for 4 weeks improved sociability and preference for social novelty in the 3-chamber 

social test, but a related strain L. johnsonii could not. The L. reuteri probiotic treatment restored 

the low levels of oxytocin-producing neurons in the model, and it also restored social-interaction-

induced long-term potentiation (Buffington et al., 2016).  

 

L. rhamnosus also seems to affect social behavior. L. rhamnosus JB-1 has been the most 

extensively studied strain. It partially prevented the preference for social novelty in antibiotic 

treated mice when co-administered, especially in females (Leclercq et al., 2017). In the chronic 

social defeat model, mice are repeatedly submitted to dominance by an aggressor. As a result, the 
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defeated mouse has diminished social preference in the 3-chamber social test. JB-1 treatment by 

gavage for 4 weeks improved the behavior to show no preference for social or non-social. 

However, JB-1 did not affect aggressor avoidance following social defeat, and in this model, did 

not prevent the altered microbiota caused by social defeat (Bharwani et al., 2017). Furthermore, 

JB-1 increases the neurons firing in the mesenteric nerve bundle, while L. salivarius did not 

(Perez-Burgos et al., 2013). 

 

Some small pilot clinical studies have moved forward to test the effects of L. rhamnosus in 

humans, with modest results (Kelly et al., 2017; Partty et al., 2015; Scalabrin et al., 2017; 

Slykerman et al., 2017). However, these studies included healthy participants, so future studies 

with at-risk populations might be more meaningful. Whether these psychobiotic effects are direct, 

the result of restoration of other bacterial taxa, or affecting metabolism of other bacteria in the 

community has not been worked out. In the antibiotic treated mice, JB-1 was sufficient to 

maintain wild type levels of several families including S24-7, Lachnospiraceae, 

Erysipelotrichaceae, and Enterobacteriaceae (Leclercq et al., 2017). The molecular mechanisms 

involved are yet to be elucidated, although related evidence indicates that the vagal nerve is likely 

involved (Bravo et al., 2011; Perez-Burgos et al., 2013). 

 

Pathogens 

Evolution in the presence of microbes has likely shaped social behavior. Pathogens, especially 

those that require contact for transmission, benefit from the increased transmission rate of group 

living (Antonovics et al., 2011; Moller, 1993). They could even have driven it through 

mechanisms like increased oxytocin production or RNA regulation necessary for brain 

development (Insel, 2010; Lukas and Clutton-Brock, 2013; Meyer-Lindenberg and Tost, 2012; 

Skuse et al., 2014). Fortunately for the host, the benefits gained by social living outweigh the 
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costs of increased exposure to pathogens, not the least of which is the exchange of microbiota 

that provide numerous benefits (Koch and Schmid-Hempel, 2011; Stilling et al., 2014). As such 

there are clear costs to isolation, and social deprivation or maternal neglect disturb the microbiota 

(Bailey and Coe, 1999; Bailey et al., 2011; O'Mahony et al., 2009). Additionally, social living 

comes with its own costs, it requires energy/evolution to produce skills like recognition of 

conspecifics, empathy, which important for hunting in animals, and is disrupted in ASD (Baron-

Cohen, 2009). So there is a balance to social living in groups versus the avoidance of pathogens 

transmitted in groups, and it is possible that both the social drive to form groups as well as the 

structural size limits of these same groups are both heavily impacted evolutionarily by bacteria, 

both commensal and pathogenic. 

 

Although pathogens likely affected evolution of social behavior, it has been difficult to pinpoint 

specific pathogens that induce it outright in mice. Pathogens cause sickness behavior, lowering 

locomotion and health, which can confound the study of sociability mechanisms (Dantzer R, 

2000). In an indirect way, infection does affect social behavior through sickness avoidance, 

where mice spend less time with a conspecific in an acute inflammatory state, and the oxytocin 

gene is involved (Boillat et al., 2015).  

 

One type of behavior, anxiety, which is a common comorbidity of ASD and has connections with 

social behavior, has been observed in connection to infection by a handful of pathogens. Infection 

by the nematode parasite Trichuris muris affects brain neurotrophic factor BDNF in the 

hippocampus as well as circulating cytokines and metabolites. Treatment with B. longum 

normalized behavior (Bercik et al., 2010). Mice infected with Campylobacter jejuni, the most 

common cause of diarrheal disease in the US (Allos, 2001), or Citrobacter rodentium, a mouse 

pathogen that is comparable to infection in humans by food-borne illness Escherichia coli, 
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showed anxiety in as little as 4-8 hours after infection.  These infected mice showed anxiety in 

the open field arena and hole-board test, both of which show exploratory behavior of mice, with 

differential neuronal activation in anxiety-circuit brain regions even before immune mediators 

were induced (Goehler et al., 2005; Goehler et al., 2008; Lyte et al., 2006). L. rueteri is able to 

reduce the stress response caused by C. rodentium (Mackos et al., 2013). 

 

Besides single pathogens altering social tendencies, it is possible that a dysbiotic microbiota as a 

pathogenic community could affect behavior. Much work is currently devoted to identifying 

particular bacterial taxa involved in susceptibility and resistance to various disease states, such as 

in chronic social defeat models (Szyszkowicz et al., 2017; Yang et al., 2017). The answer may lie 

in the altered metabolites, SCFA, and regulatory features of the community as a whole. For 

instance, the levels of some microbe-associated molecular patterns (MAMPs) and their detection 

by host pathogen recognition receptors (PRRs) can relate to social behavior. The peptidoglycan-

sensing molecule, Pglyrp2 detects peptidoglycan from the commensal gut microbiota. Its 

knockout affects expression of an autism risk gene, c-Met, and also causes changes in social 

behavior. Expression of Pglyrp2 is affected by antibiotic treatment or germ-free status in 

offspring (Arentsen et al., 2017). Clearly, microbial dysbiosis is associated with altered social 

behavior, but the extent to which a disrupted bacterial community is pathogenic is yet to be 

determined. 

 

BRAIN COMPARTMENTS INVOLVED IN SOCIAL CIRCUITS ARE AFFECTED BY 

THE LOSS OF GUT MICROBIOTA 

The brain is the main organ controlling the output of social behavior. Therefore, understanding 

the brain regions that contribute to social behavior will be crucial to understanding the 
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interactions between the gut microbiota and the brain. The loss of microbiota in the gut results in 

profound perturbation of brain development (Fig. 2). 

 

GF mice exhibit ASD-like social deficits (Desbonnet et al., 2014). Since social behavior is 

controlled collectively by multiple brain regions that regulate emotion, social cognition, learning 

and stress, the question then becomes: does the alteration in gut microbiota affect the brain? If so, 

what are the consequences to the brain at the morphological, transcriptional and functional levels 

when the gut microbiota is depleted?  

 

Brain morphology 

Evidence shows that the amygdala and hippocampus are targets for altered brain morphology in 

GF animals. Compared to SPF mice, GF mice show enlarged amygdala and hippocampal volume, 

with the total brain volume unchanged. Specifically, GF mice display larger lateral amygdala 

(LA), basolateral amygdala (BLA), central amygdala (CeA), hippocampal CA2 and CA3 

(Luczynski et al., 2016). CA2 activation is known to enhance social memory and its malfunction 

is implicated in ASD (Hitti and Siegelbaum, 2014; Leroy et al., 2017; Smith et al., 2016). 

Another study showed that in GF mice, there is increased dorsal hippocampal neurogenesis in the 

adults compared to SPF mice, which can potentially explain the altered hippocampal volume 

(Ogbonnaya et al., 2015).  

 

At the level of single neurons, GF mice exhibit altered neuronal dendrite length and branching. In 

the BLA aspiny and pyramidal interneurons, dendrites are longer with more branching points. 

Ventral hippocampus pyramidal neurons display shorter dendrites, smaller spine density, and 

fewer stubby and mushroom spines. Under GF condition, there are more synaptic connections in 

the BLA region and less synaptic connection in the hippocampus (Luczynski et al., 2016). 
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Besides the amygdala and hippocampus, GF mice exhibit enlarged periaqueductal gray (PAG), 

smaller anterior cingulate cortex (ACC), and increased basilar dendritic length in ACC pyramidal 

neurons (Luczynski et al., 2017). The changes in volume and dendritic morphology in the brain 

subregions of GF mice could contribute to the altered stress response and social impairment.  

 

Transcriptional analysis 

GF mice display a unique transcriptome signature in the brain that might underlie behavioral 

changes. Several studies have attempted to understand the transcriptional profiles between GF 

and SPF mice. The first study profiling the transcriptional level in GF mice identified several 

different subsets of genes that are differed from SPF mice in different regions, including 

hippocampus, cortex, striatum, cerebellum and hypothalamus. They concluded that four 

canonical pathways in the brain could be mediated by gut microbiota, including citrate cycle, 

synaptic long-term potentiation, C21-steroid hormone metabolism and cAMP-mediated signaling 

(Diaz Heijtz et al., 2011). Therefore, differential gene expression in the regions mentioned above 

implicates alterations in their activity and can potentially explain the changes in social behavior 

in GF mice. 

 

Later, the transcriptional profile in the amygdala of GF compared to SPF mice showed up-

regulation of genes related to neurogenesis, synaptic transmission, cognition and nervous system 

development (Hoban et al., 2017; Stilling et al., 2015). Immediate early genes (Fos, Fosb, Arc, 

Egr2 and Nr4a1), synapse and neuronal transmission-related genes (Drd2, Syt2, Chat, Adora2a, 

Sigmar1 and Pde10a), chemokines (Ccl27a) and the MAP kinase signaling pathway were up-

regulated, and neuropeptides (Bdnf) were down-regulated in GF animals (Hoban et al., 2017; 

Stilling et al., 2015). Clearly, the lack of gut microbiota could cause pre-activation of neuronal-

related genes and alterations in neuropeptides in the amygdala.  
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In another study, a GF state was associated with myelination-related gene upregulation in the 

prefrontal cortex. A lack of microbiota could result in the increased myelin plasticity and 

neuronal activity in the prefrontal cortex. Several genes that are related to myelination (Mag, 

Mbp, Mobp, Mog, Plp1) are upregulated only in prefrontal cortex of GF mice, but not in other 

regions. In addition, oligodendrocyte-specific gene (Olig1) and genes involved in myelin 

regulation (Egr2, Sox10) were also found to be upregulated in the absence of microbiota. Indeed, 

the myelin sheath thickness is dramatically increased in the prefrontal cortex of GF mice. 

Interestingly, recolonizing the GF mice with conventional gut microbiota at weaning could 

reverse the effect on the transcription profile, suggesting a causal relationship between microbial 

colonization and gene expression in the brain. The recolonization experiment also implied a time 

window in which the developing brain is especially sensitive to modulation by gut microbiota 

(Hoban et al., 2016).  

 

The hippocampus participates in social cognition and shapes social behaviors. In GF mice, 

microarray analysis revealed that the cAMP responding element-binding protein (CREB) 

signaling was one of the most highly dysregulated pathways in GF mice. They further confirmed 

that phosphorylated CREB (pCREB) expression is upregulated and protein kinase C beta (Prkcb), 

AMPA receptor subunits (Gria1-4), and serine/threonine-protein kinase (Akt1) are downregulated 

in the hippocampus of GF mice. The changes of CREB and pCREB level can be restored by 

colonization with SPF microbiota (Zeng et al., 2016).  

 

Since the amygdala, hippocampus and prefrontal cortex are target regions for social 

communication, the evidence that gut microbiota can affect transcriptional profile in these 

regions has a profound implication for the mechanism by which the gut communicates with the 
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brain to control social behavior. However, the exact time window in which the microbiota 

modulates brain development and the corresponding behavioral effects on adult social 

communication remains to be elucidated. Together, the above evidence suggests the role of gut 

microbiota in modulating neuronal related gene expression and behavior.  

 

Neuronal molecules 

Neurotransmitters, neurotrophic factors and other signaling molecules could modulate brain 

function in response to behavior and external stress. These molecules in the brain can be altered 

in the absence of gut microbiota (Table 3) and can potentially be the mechanisms by which gut 

microbiota modulate brain neuronal activity and social behavior. Several neurotransmitters and 

their receptors are differentially expressed in GF mice, which suggests an alteration in both the 

level and the activity of these neurotransmitters. 

 

The brain serotonergic system can potentially be mediated through the gut microbiota. Serotonin, 

serotonin metabolite, and the serotonin precursor tryptophan are increased in GF mice in the 

hippocampus and striatum (Clarke et al., 2013; Diaz Heijtz et al., 2011). However, no significant 

change in the level of serotonin transporters or receptors was detected in the hippocampus 

(Clarke et al., 2013). Indeed, another study specifically focusing on the dentate granule of the 

hippocampus found a decreased level of serotonin 1A receptor (Neufeld et al., 2011), and in GF 

rats, a lower serotonin level in the hippocampus was observed (Crumeyrolle-Arias et al., 2014). 

 

Alterations in the dopaminergic pathway were also reported in GF animals. In GF mice, 

increased dopamine turnover rate and elevated dopamine D1 receptor levels were found in the 

striatum and hippocampal dentate gyrus (DG), respectively (Diaz Heijtz et al., 2011). On the 

contrary, dopamine turnover rate is decreased in GF rat, with a lower dopamine metabolite 
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detected in the frontal cortex, hippocampus and striatum (Crumeyrolle-Arias et al., 2014). 

Another canonical monoamine neurotransmitter, norepinephrine, has not been extensively studied 

in GF mice, although one report indicated that the turnover rate of norepinephrine was increased 

in the striatum of GF mice (Diaz Heijtz et al., 2011). Besides monoamine neurotransmitter, 

glutamate receptors are also regulated by microbial state (Neufeld et al., 2011; Sudo et al., 2004).  

 

Brain derived neurotrophic factor (BDNF), a major neurotrophic factor in the brain, has been 

extensively investigated in GF mice. In general, the level of BDNF is lowered in GF mice 

compared to SPF mice across brain regions including the cortex (Sudo et al., 2004), amygdala 

(Arentsen et al., 2015), BLA (Diaz Heijtz et al., 2011), hippocampus (Clarke et al., 2013; Sudo et 

al., 2004) and hippocampal CA1 (Diaz Heijtz et al., 2011; Gareau et al., 2011). Although most 

studies indicate that BDNF is reduced in the brain of GF mice, one study showed that BDNF 

expression is increased in hippocampal DG in female GF mice (Neufeld et al., 2011), suggesting 

that the effect of gut microbiota on brain activity can be sex-specific.  

 

GF mice also display higher circulated corticosterone level in baseline (Neufeld et al., 2011) and 

under stress (Clarke et al., 2013; Crumeyrolle-Arias et al., 2014; Sudo et al., 2004). Interestingly, 

the receptor for corticosterone, glucocorticoid receptors (GR), was lower in the hippocampus GF 

rat. Meanwhile, the activator of corticosterone, corticotropin-releasing factor (CRF), was 

increased in the hypothalamus of GF rat (Crumeyrolle-Arias et al., 2014). These results indicate 

an increased stress response and explain the corresponding neurochemical changes in the brain. 

This effect can be partially rescued when GF mice are colonized with SPF microbiota during 

early (9 week) but not late (17 week) ages (Sudo et al., 2004). These results show that the gut 

microbiota interacts with the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the 

stress response and participates in programing of brain circuits in specific developmental time 
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points. The hypothalamus as a component of the HPA axis is also implicated in controlling social 

behavior, suggesting a correlation between stress response, anxiety and social interaction (Liu et 

al., 1997).  

 

The abundance of postsynaptic density protein (PSD-95) and synaptophsin is increased in the 

striatum of GF mice, implicating changes in synaptic plasticity in GF mice.  Altered levels of 

both these markers of synaptogenesis suggest a long-term programming of synaptic connections 

that could lead to change in behaviors in adults (Diaz Heijtz et al., 2011). Synaptic molecule- 

NGF1-A, an immediate early gene, was reduced at the basal level in the amygdala, anterior 

olfactory region and orbital frontal cortex (Arentsen et al., 2015; Diaz Heijtz et al., 2011), while 

another immediate early gene, c-Fos, was decreased in the hippocampus (Gareau et al., 2011). 

The transcriptional factor- ∆FosB, a mediator of long-term neuronal plasticity, is upregulated in 

dorsal raphe nucleus (DRN) in GF mice (Campos et al., 2016). 

 

Together, the above evidence shows that the gut microbiome could alter the brain function at the 

morphological, transcriptional, and functional levels. Microbial regulation of neuronal molecules 

could modulate the neuronal activity in multiple brain regions, suggesting the mechanisms by 

which gut microbiota communicate with the central nervous system to control host social 

behavior.  

 

What do the changes in the GF brain implicate in the control of social behavior? 

Recently, the brain circuits controlling social behavior have been extensively investigated. Novel 

techniques, such as optogenetics and chemogenetics (also known as DREADD- Designer 

Receptors Exclusively Activated by Designer Drugs) have enabled significant advances toward 

understanding the machinery of social behavior. Optogenetics and chemogenetics are techniques 
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in which researchers deliver exogenous genes to the brain via viral infection. Later, these genes 

can be manipulated by either light (optogenetics) or synthetic chemicals (chemogenetics) that 

uninfected cells do not respond to (Boyden et al., 2005; Rogan and Roth, 2011). These advanced 

techniques enable researchers to pinpoint the brain regions that control social behavior. Since the 

impairment of social investigation and social novelty are drastic phenotypes in GF rodents, it is 

important to bridge the gap between social deficit and gut microbes at the level of neural circuits 

(Fig. 2). 

 

As part of the emotion- and memory-controlling limbic system, the amygdala is crucial for the 

experience of multiple types of emotions, including social-anxiety. Two of its subregions, the 

BLA and LA, are responsible for regulating social behavior. The BLA and LA of GF mice has 

been found to show morphological changes and lower BDNF level (Diaz Heijtz et al., 2011; 

Luczynski et al., 2016). Whether these alterations result in the social deficit is still not clear. 

Activating the excitatory neurons of BLA through chemogenetic or optogenetic methods induces 

social anxiety-like behavior, with no social preference of a stranger mouse in the 3-chamber 

social test (Siuda et al., 2016). In addition, when excitatory neuron projections from the BLA to 

the ventral hippocampus brain region are inhibited, reduced social interaction is seen in the 

resident-juvenile-intruder and 3-chamber social tests. Likewise, activation of the same 

projections increased social interaction (Felix-Ortiz and Tye, 2014). The projection of LA 

neurons to the medial amygdala (MeA) has been found to be associated with transmission of 

social information. Inactivation of LA or MeA by DREADD diminished the social information 

that was delivered by another rat (Twining et al., 2017).  

 

The hippocampus is another region in the mammalian limbic system, and it has been implicated 

in social memory storage. Several findings point out that the morphology, transcriptional 
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profiling, neurogenesis, synaptic neurotransmission, stress response and neuropeptide expression 

are altered in the hippocampus of GF mice (Clarke et al., 2013; Crumeyrolle-Arias et al., 2014; 

Diaz Heijtz et al., 2011; Gareau et al., 2011; Luczynski et al., 2016; Neufeld et al., 2011; 

Ogbonnaya et al., 2015; Sudo et al., 2004). Optogenetic inhibition of excitatory neurons in 

specific regions of hippocampus such as the ventral hippocampal CA1 disrupted the ability to 

discriminate a novel from a familiar mouse. Specific inhibition of the axonal terminals of these 

neurons in the nucleus accumbens (NAc) also disrupted the social memory storage (Okuyama et 

al., 2016). 

 

The hypothalamus is responsible for many vital functions, such as the control of hormones and 

delicate emotional behaviors. Dysregulation of stress-response has been well documented in GF 

animals, as GF rodents display the increase of corticosterone when they are under stress 

conditions (Clarke et al., 2013; Crumeyrolle-Arias et al., 2014; Neufeld et al., 2011; Sudo et al., 

2004). Furthermore, supplementation of the bacterial strain L. reuteri increases the oxytocin
+
 

neurons in paraventricular nucleus of hypothalamus (PVN) in the MHFD model (Buffington et 

al., 2016), indicating that gut microbes might affect social behavior through the regulation of 

hypothalamic neurons. Optogenetically activating oxytocinergic neurons in the PVN facilitates 

anogenital exploration, a critical olfactory sampling of conspecific social investigation behavior. 

It also consolidates social memory and enhances social novelty seeking behavior (Oettl et al., 

2016). Another study shows an increase of activity in oxytocin neurons in the PVN during social 

interaction, and optogenetic activation of oxytocin neurons promotes social behavior (Hung et al., 

2017). In addition, the axon terminals of the PVN oxytocin neurons are located at the VTA, a 

region involved in social rewarding (Gunaydin et al., 2014). Manipulation the axon terminals 

from the PVN at the VTA also altered social behavior. Therefore, PVN oxytocinergic neurons 

can regulate social behavior through the enhancement of PVN-VTA social rewarding experiences 
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(Hung et al., 2017), which supports the mechanism by which L. reuteri promotes social behavior 

in MHFD mice through the increase of oxytocin in the PVN and restoration of synaptic plasticity 

in the VTA (Buffington et al., 2016). 

 

The DRN has been well characterized as a source of neurotransmitters in the brain influencing 

our behaviors and physiology. The increase of particular transcription factors in the DRN in GF 

mice implicates an alteration of synaptic activity (Campos et al., 2016). One report suggests that 

dopaminergic neurons in the DRN are involved in controlling social behavior after social 

isolation. Optogenetic activation of dopaminergic neurons in the DRN increased social 

preference behavior in the 3-chamber social test. Moreover, inhibition of dopaminergic neurons 

in DRN can decrease social preference behavior only in a socially isolated mouse. These data 

suggest that dopaminergic neurons in DRN promote the social investigation behavior in order to 

counteract the aversive state of social isolation (Matthews et al., 2016). 

 

Although the advance of technology in the neuroscience field has elucidated the intricate brain 

circuits controlling social behavior, the detailed wiring and circuits are still under investigation. 

Based on the understanding of brain circuits of social behavior, unveiling the mechanisms of how 

the loss or alteration of gut microbes affects social behavior will be an important step for the field 

to pursue.  

 

CONCLUSIONS 

The gut and our bacterial guests have received much attention recently. More and more 

researchers indicate that the living, co-existing microbes in our gut function far beyond digestion, 

but surprisingly regulate our immunity, metabolism, development, and even emotion. The 

microbiota-gut-brain axis theory has been postulated over a decade. However, the knowledge we 
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have in the intricate connections is still very limited. It is exceptionally challenging to understand 

whether there is a canonical mechanism underlying the communication among gut microbes, the 

brain, and social behavior. Social impairment is one of the major symptoms of ASD and has been 

associated with the dysbiosis of gut microbiota (Fig. 1). Gnotobiotic techniques and antibiotic 

treatments demonstrate the impact on the brain and host social behavior when gut microbes are 

completely or partially depleted (Buffington et al., 2016; Desbonnet et al., 2014; Desbonnet et al., 

2015; Leclercq et al., 2017). Bacterial taxa that are identified from work with mouse models of 

ASD, such as B. fragilis, L. reuteri, L. rhamnosus, are great candidates to examine how the 

bacteria directly or indirectly regulate host social behavior (Bharwani et al., 2017; Buffington et 

al., 2016; Hsiao et al., 2013; Leclercq et al., 2017). The brain regions that are altered in GF 

rodents, such as prefrontal cortex, amygdala, hypothalamus, and hippocampus are likely directly 

involved in the circuits of social behavior (Fig. 2). Building on what is known, using the 

techniques being developed in the field, the mystery of what our microbiota do to our emotions 

will eventually become clear. Searching for a safe way to alleviate the social symptoms of ASD 

through manipulation of microbial communities will be the ultimate goal. 

 

ACKNOWLEDGEMENTS 

The authors apologize to colleagues whose work could not be included in this review due to 

space considerations. We thank Sarkis K. Mazmanian for support and encouragement on this 

review. Related research in the Mazmanian laboratory is funded by grants from the NIH 

(MH100556, DK078938, and NS085910), DARPA, the Heritage Medical Research Institute, 

Autism Speaks and the Simons Foundation. 

 

REFERENCES 

Abazyan, B., Nomura, J., Kannan, G., Ishizuka, K., Tamashiro, K.L., Nucifora, F., Pogorelov, V., 

Ladenheim, B., Yang, C., Krasnova, I.N., Cadet, J.L., Pardo, C., Mori, S., Kamiya, A., Vogel, 

This article is protected by copyright. All rights reserved.



 33

M.W., Sawa, A., Ross, C.A., Pletnikov, M.V. 2010. Prenatal interaction of mutant DISC1 and 

immune activation produces adult psychopathology. Biol Psychiatry 68:1172-1181. 

Adams, J.B., Johansen, L.J., Powell, L.D., Quig, D., Rubin, R.A. 2011. Gastrointestinal flora and 

gastrointestinal status in children with autism--comparisons to typical children and correlation 

with autism severity. BMC Gastroenterol 11:22. 

Alegado, R.A., Brown, L.W., Cao, S., Dermenjian, R.K., Zuzow, R., Fairclough, S.R., Clardy, J., 

King, N. 2012. A bacterial sulfonolipid triggers multicellular development in the closest living 

relatives of animals. Elife 1:e00013. 

Allos, B.M. 2001. Campylobacter jejuni Infections: update on emerging issues and trends. Clin 

Infect Dis 32:1201-1206. 

Antonovics, J., Boots, M., Abbate, J., Baker, C., McFrederick, Q., Panjeti, V. 2011. Biology and 

evolution of sexual transmission. Ann N Y Acad Sci 1230:12-24. 

Arentsen, T., Qian, Y., Gkotzis, S., Femenia, T., Wang, T., Udekwu, K., Forssberg, H., Diaz 

Heijtz, R. 2017. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain 

development and behavior. Mol Psychiatry 22:257-266. 

Arentsen, T., Raith, H., Qian, Y., Forssberg, H., Diaz Heijtz, R. 2015. Host microbiota modulates 

development of social preference in mice. Microb Ecol Health Dis 26:29719. 

Atladottir, H.O., Thorsen, P., Ostergaard, L., Schendel, D.E., Lemcke, S., Abdallah, M., Parner, 

E.T. 2010. Maternal infection requiring hospitalization during pregnancy and autism spectrum 

disorders. J Autism Dev Disord 40:1423-1430. 

Bach, J.F. 2002. The effect of infections on susceptibility to autoimmune and allergic diseases. N 

Engl J Med 347:911-920. 

Bailey, M.T., Coe, C.L. 1999. Maternal separation disrupts the integrity of the intestinal 

microflora in infant rhesus monkeys. Dev Psychobiol 35:146-155. 

Bailey, M.T., Dowd, S.E., Galley, J.D., Hufnagle, A.R., Allen, R.G., Lyte, M. 2011. Exposure to 

a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced 

immunomodulation. Brain Behav Immun 25:397-407. 

Baron-Cohen, S. 2009. Autism: the empathizing-systemizing (E-S) theory. Ann N Y Acad Sci 

1156:68-80. 

Becker, K.G. 2007. Autism, asthma, inflammation, and the hygiene hypothesis. Med Hypotheses 

69:731-740. 

Bercik, P., Verdu, E.F., Foster, J.A., Macri, J., Potter, M., Huang, X., Malinowski, P., Jackson, 

W., Blennerhassett, P., Neufeld, K.A., Lu, J., Khan, W.I., Corthesy-Theulaz, I., Cherbut, C., 

Bergonzelli, G.E., Collins, S.M. 2010. Chronic gastrointestinal inflammation induces anxiety-like 

behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102-

2112 e2101. 

Bharwani, A., Mian, M.F., Surette, M.G., Bienenstock, J., Forsythe, P. 2017. Oral treatment with 

Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social 

stress. BMC Med 15:7. 

Bienenstock, J., Kunze, W.A., Forsythe, P. 2017. Disruptive physiology: olfaction and the 

microbiome-gut-brain axis. Biol Rev Camb Philos Soc. 

Boillat, M., Challet, L., Rossier, D., Kan, C., Carleton, A., Rodriguez, I. 2015. The vomeronasal 

system mediates sick conspecific avoidance. Curr Biol 25:251-255. 

Boksa, P. 2010. Effects of prenatal infection on brain development and behavior: a review of 

findings from animal models. Brain Behav Immun 24:881-897. 

Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. 2005. Millisecond-timescale, 

genetically targeted optical control of neural activity. Nat Neurosci 8:1263-1268. 

Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., 

Bienenstock, J., Cryan, J.F. 2011. Ingestion of Lactobacillus strain regulates emotional behavior 

This article is protected by copyright. All rights reserved.



 34

and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 

108:16050-16055. 

Bromley, R.L., Mawer, G.E., Briggs, M., Cheyne, C., Clayton-Smith, J., Garcia-Finana, M., 

Kneen, R., Lucas, S.B., Shallcross, R., Baker, G.A., Liverpool, Manchester Neurodevelopment, 

G. 2013. The prevalence of neurodevelopmental disorders in children prenatally exposed to 

antiepileptic drugs. J Neurol Neurosurg Psychiatry 84:637-643. 

Browne, H.P., Neville, B.A., Forster, S.C., Lawley, T.D. 2017. Transmission of the gut 

microbiota: spreading of health. Nat Rev Microbiol 15:531-543. 

Brucker, R.M., Bordenstein, S.R. 2013. The hologenomic basis of speciation: gut bacteria cause 

hybrid lethality in the genus Nasonia. Science 341:667-669. 

Buffington, S.A., Di Prisco, G.V., Auchtung, T.A., Ajami, N.J., Petrosino, J.F., Costa-Mattioli, 

M. 2016. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits 

in Offspring. Cell 165:1762-1775. 

Buie, T., Campbell, D.B., Fuchs, G.J., 3rd, Furuta, G.T., Levy, J., Vandewater, J., Whitaker, A.H., 

Atkins, D., Bauman, M.L., Beaudet, A.L., Carr, E.G., Gershon, M.D., Hyman, S.L., Jirapinyo, P., 

Jyonouchi, H., Kooros, K., Kushak, R., Levitt, P., Levy, S.E., Lewis, J.D., Murray, K.F., 

Natowicz, M.R., Sabra, A., Wershil, B.K., Weston, S.C., Zeltzer, L., Winter, H. 2010. Evaluation, 

diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus 

report. Pediatrics 125 Suppl 1:S1-18. 

Burokas, A., Arboleya, S., Moloney, R.D., Peterson, V.L., Murphy, K., Clarke, G., Stanton, C., 

Dinan, T.G., Cryan, J.F. 2017. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have 

Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. 

Biol Psychiatry 82:472-487. 

Campos, A.C., Rocha, N.P., Nicoli, J.R., Vieira, L.Q., Teixeira, M.M., Teixeira, A.L. 2016. 

Absence of gut microbiota influences lipopolysaccharide-induced behavioral changes in mice. 

Behav Brain Res 312:186-194. 

Careaga, M., Murai, T., Bauman, M.D. 2017. Maternal Immune Activation and Autism Spectrum 

Disorder: From Rodents to Nonhuman and Human Primates. Biol Psychiatry 81:391-401. 

Carlson, A.L., Xia, K., Azcarate-Peril, M.A., Goldman, B.D., Ahn, M., Styner, M.A., Thompson, 

A.L., Geng, X., Gilmore, J.H., Knickmeyer, R.C. 2017. Infant Gut Microbiome Associated With 

Cognitive Development. Biol Psychiatry. 

Choi, C.S., Gonzales, E.L., Kim, K.C., Yang, S.M., Kim, J.W., Mabunga, D.F., Cheong, J.H., 

Han, S.H., Bahn, G.H., Shin, C.Y. 2016a. The transgenerational inheritance of autism-like 

phenotypes in mice exposed to valproic acid during pregnancy. Sci Rep 6:36250. 

Choi, G.B., Yim, Y.S., Wong, H., Kim, S., Kim, H., Kim, S.V., Hoeffer, C.A., Littman, D.R., 

Huh, J.R. 2016b. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes 

in offspring. Science 351:933-939. 

Chow, K.H., Yan, Z., Wu, W.L. 2016. Induction of Maternal Immune Activation in Mice at Mid-

gestation Stage with Viral Mimic Poly(I:C). J Vis Expe53643. 

Christensen, J., Gronborg, T.K., Sorensen, M.J., Schendel, D., Parner, E.T., Pedersen, L.H., 

Vestergaard, M. 2013. Prenatal valproate exposure and risk of autism spectrum disorders and 

childhood autism. JAMA 309:1696-1703. 

Chu, D.M., Antony, K.M., Ma, J., Prince, A.L., Showalter, L., Moller, M., Aagaard, K.M. 2016. 

The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med 

8:77. 

Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., Dinan, T.G., 

Cryan, J.F. 2013. The microbiome-gut-brain axis during early life regulates the hippocampal 

serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666-673. 

Coretti, L., Cristiano, C., Florio, E., Scala, G., Lama, A., Keller, S., Cuomo, M., Russo, R., Pero, 

R., Paciello, O., Mattace Raso, G., Meli, R., Cocozza, S., Calignano, A., Chiariotti, L., Lembo, F. 

This article is protected by copyright. All rights reserved.



 35

2017. Sex-related alterations of gut microbiota composition in the BTBR mouse model of autism 

spectrum disorder. Sci Rep 7:45356. 

Coury, D.L., Ashwood, P., Fasano, A., Fuchs, G., Geraghty, M., Kaul, A., Mawe, G., Patterson, 

P., Jones, N.E. 2012. Gastrointestinal conditions in children with autism spectrum disorder: 

developing a research agenda. Pediatrics 130 Suppl 2:S160-168. 

Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., Vancassel, S., Cardona, A., Dauge, V., Naudon, 

L., Rabot, S. 2014. Absence of the gut microbiota enhances anxiety-like behavior and 

neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207-217. 

Dantzer R, A.A., Bluthe RM, Konsman JR, Laye S, Parnet P, et al, 2000. Sickness Behavior: A 

Neuroimmune-Based Response to Infectious Disease. Springer, Berlin, Heidelberg. 

De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D.I., 

Cristofori, F., Guerzoni, M.E., Gobbetti, M., Francavilla, R. 2013. Fecal microbiota and 

metabolome of children with autism and pervasive developmental disorder not otherwise 

specified. PLoS One 8:e76993. 

De Palma, G., Blennerhassett, P., Lu, J., Deng, Y., Park, A.J., Green, W., Denou, E., Silva, M.A., 

Santacruz, A., Sanz, Y., Surette, M.G., Verdu, E.F., Collins, S.M., Bercik, P. 2015. Microbiota 

and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 

6:7735. 

de Theije, C.G., Koelink, P.J., Korte-Bouws, G.A., Lopes da Silva, S., Korte, S.M., Olivier, B., 

Garssen, J., Kraneveld, A.D. 2014a. Intestinal inflammation in a murine model of autism 

spectrum disorders. Brain Behav Immun 37:240-247. 

de Theije, C.G., Wopereis, H., Ramadan, M., van Eijndthoven, T., Lambert, J., Knol, J., Garssen, 

J., Kraneveld, A.D., Oozeer, R. 2014b. Altered gut microbiota and activity in a murine model of 

autism spectrum disorders. Brain Behav Immun 37:197-206. 

Degroote, S., Hunting, D.J., Baccarelli, A.A., Takser, L. 2016. Maternal gut and fetal brain 

connection: Increased anxiety and reduced social interactions in Wistar rat offspring following 

peri-conceptional antibiotic exposure. Prog Neuropsychopharmacol Biol Psychiatry 71:76-82. 

Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F. 2014. Microbiota is essential 

for social development in the mouse. Mol Psychiatry 19:146-148. 

Desbonnet, L., Clarke, G., Traplin, A., O'Sullivan, O., Crispie, F., Moloney, R.D., Cotter, P.D., 

Dinan, T.G., Cryan, J.F. 2015. Gut microbiota depletion from early adolescence in mice: 

Implications for brain and behaviour. Brain Behav Immun 48:165-173. 

Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M.L., 

Forssberg, H., Pettersson, S. 2011. Normal gut microbiota modulates brain development and 

behavior. Proc Natl Acad Sci U S A 108:3047-3052. 

Dinan, T.G., Stanton, C., Cryan, J.F. 2013. Psychobiotics: a novel class of psychotropic. Biol 

Psychiatry 74:720-726. 

Dufour-Rainfray, D., Vourc'h, P., Le Guisquet, A.M., Garreau, L., Ternant, D., Bodard, S., 

Jaumain, E., Gulhan, Z., Belzung, C., Andres, C.R., Chalon, S., Guilloteau, D. 2010. Behavior 

and serotonergic disorders in rats exposed prenatally to valproate: a model for autism. Neurosci 

Lett 470:55-59. 

Estes, M.L., McAllister, A.K. 2016. Maternal immune activation: Implications for 

neuropsychiatric disorders. Science 353:772-777. 

Felix-Ortiz, A.C., Tye, K.M. 2014. Amygdala inputs to the ventral hippocampus bidirectionally 

modulate social behavior. J Neurosci 34:586-595. 

Finegold, S.M. 2011. State of the art; microbiology in health and disease. Intestinal bacterial flora 

in autism. Anaerobe 17:367-368. 

Fortunato, J.J., da Rosa, N., Martins Laurentino, A.O., Goulart, M., Michalak, C., Borges, L.P., 

da Cruz Cittadin Soares, E., Reis, P.A., de Castro Faria Neto, H.C., Petronilho, F. 2017. Effects 

This article is protected by copyright. All rights reserved.



 36

of omega-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally 

exposed to lipopolysaccarides. Nutrition 35:119-127. 

Frohlich, E.E., Farzi, A., Mayerhofer, R., Reichmann, F., Jacan, A., Wagner, B., Zinser, E., 

Bordag, N., Magnes, C., Frohlich, E., Kashofer, K., Gorkiewicz, G., Holzer, P. 2016. Cognitive 

impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. 

Brain Behav Immun 56:140-155. 

Gacias, M., Gaspari, S., Santos, P.M., Tamburini, S., Andrade, M., Zhang, F., Shen, N., Tolstikov, 

V., Kiebish, M.A., Dupree, J.L., Zachariou, V., Clemente, J.C., Casaccia, P. 2016. Microbiota-

driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. 

Elife 5. 

Galley, J.D., Bailey, M., Kamp Dush, C., Schoppe-Sullivan, S., Christian, L.M. 2014. Maternal 

obesity is associated with alterations in the gut microbiome in toddlers. PLoS One 9:e113026. 

Garay, P.A., Hsiao, E.Y., Patterson, P.H., McAllister, A.K. 2013. Maternal immune activation 

causes age- and region-specific changes in brain cytokines in offspring throughout development. 

Brain Behav Immun 31:54-68. 

Gareau, M.G., Wine, E., Rodrigues, D.M., Cho, J.H., Whary, M.T., Philpott, D.J., Macqueen, G., 

Sherman, P.M. 2011. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 

60:307-317. 

Goehler, L.E., Gaykema, R.P., Opitz, N., Reddaway, R., Badr, N., Lyte, M. 2005. Activation in 

vagal afferents and central autonomic pathways: early responses to intestinal infection with 

Campylobacter jejuni. Brain Behav Immun 19:334-344. 

Goehler, L.E., Park, S.M., Opitz, N., Lyte, M., Gaykema, R.P. 2008. Campylobacter jejuni 

infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for 

viscerosensory modulation of exploratory behavior. Brain Behav Immun 22:354-366. 

Golubeva, A.V., Joyce, S.A., Moloney, G., Burokas, A., Sherwin, E., Arboleya, S., Flynn, I., 

Khochanskiy, D., Moya-Perez, A., Peterson, V., Rea, K., Murphy, K., Makarova, O., Buravkov, 

S., Hyland, N.P., Stanton, C., Clarke, G., Gahan, C.G.M., Dinan, T.G., Cryan, J.F. 2017. 

Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with 

Gastrointestinal Dysfunction in a Mouse Model of Autism. EBioMedicine 24:166-178. 

Gorrindo, P., Williams, K.C., Lee, E.B., Walker, L.S., McGrew, S.G., Levitt, P. 2012. 

Gastrointestinal dysfunction in autism: parental report, clinical evaluation, and associated factors. 

Autism Res 5:101-108. 

Gunaydin, L.A., Grosenick, L., Finkelstein, J.C., Kauvar, I.V., Fenno, L.E., Adhikari, A., 

Lammel, S., Mirzabekov, J.J., Airan, R.D., Zalocusky, K.A., Tye, K.M., Anikeeva, P., Malenka, 

R.C., Deisseroth, K. 2014. Natural neural projection dynamics underlying social behavior. Cell 

157:1535-1551. 

Gyorffy, B.A., Gulyassy, P., Gellen, B., Volgyi, K., Madarasi, D., Kis, V., Ozohanics, O., Papp, 

I., Kovacs, P., Lubec, G., Dobolyi, A., Kardos, J., Drahos, L., Juhasz, G., Kekesi, K.A. 2016. 

Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following 

prenatal immune activation in rats. Brain Behav Immun 56:289-309. 

Hitti, F.L., Siegelbaum, S.A. 2014. The hippocampal CA2 region is essential for social memory. 

Nature 508:88-92. 

Hoban, A.E., Stilling, R.M., Moloney, G., Shanahan, F., Dinan, T.G., Clarke, G., Cryan, J.F. 

2017. The microbiome regulates amygdala-dependent fear recall. Mol Psychiatry. 

Hoban, A.E., Stilling, R.M., Ryan, F.J., Shanahan, F., Dinan, T.G., Claesson, M.J., Clarke, G., 

Cryan, J.F. 2016. Regulation of prefrontal cortex myelination by the microbiota. Transl 

Psychiatry 6:e774. 

Hsiao, E.Y., McBride, S.W., Chow, J., Mazmanian, S.K., Patterson, P.H. 2012. Modeling an 

autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci U S A 

109:12776-12781. 

This article is protected by copyright. All rights reserved.



 37

Hsiao, E.Y., McBride, S.W., Hsien, S., Sharon, G., Hyde, E.R., McCue, T., Codelli, J.A., Chow, 

J., Reisman, S.E., Petrosino, J.F., Patterson, P.H., Mazmanian, S.K. 2013. Microbiota modulate 

behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 

155:1451-1463. 

Human Microbiome Project, C. 2012. Structure, function and diversity of the healthy human 

microbiome. Nature 486:207-214. 

Hung, L.W., Neuner, S., Polepalli, J.S., Beier, K.T., Wright, M., Walsh, J.J., Lewis, E.M., Luo, 

L., Deisseroth, K., Dolen, G., Malenka, R.C. 2017. Gating of social reward by oxytocin in the 

ventral tegmental area. Science 357:1406-1411. 

Insel, T.R. 2010. The challenge of translation in social neuroscience: a review of oxytocin, 

vasopressin, and affiliative behavior. Neuron 65:768-779. 

Investigators, A.a.D.D.M.N.S.Y.P., 2014. Prevalence of Autism Spectrum Disorder Among 

Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, 

United States, 2010. In: Prevention, C.f.D.C.a. (Ed.), Surveillance Summaries, pp. 1-21. 

Kang, D.W., Adams, J.B., Gregory, A.C., Borody, T., Chittick, L., Fasano, A., Khoruts, A., Geis, 

E., Maldonado, J., McDonough-Means, S., Pollard, E.L., Roux, S., Sadowsky, M.J., Lipson, K.S., 

Sullivan, M.B., Caporaso, J.G., Krajmalnik-Brown, R. 2017. Microbiota Transfer Therapy alters 

gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. 

Microbiome 5:10. 

Kang, D.W., Park, J.G., Ilhan, Z.E., Wallstrom, G., Labaer, J., Adams, J.B., Krajmalnik-Brown, 

R. 2013. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic 

children. PLoS One 8:e68322. 

Kang, S.S., Kurti, A., Fair, D.A., Fryer, J.D. 2014. Dietary intervention rescues maternal obesity 

induced behavior deficits and neuroinflammation in offspring. J Neuroinflammation 11:156. 

Kelly, J.R., Allen, A.P., Temko, A., Hutch, W., Kennedy, P.J., Farid, N., Murphy, E., Boylan, G., 

Bienenstock, J., Cryan, J.F., Clarke, G., Dinan, T.G. 2017. Lost in translation? The potential 

psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in 

healthy male subjects. Brain Behav Immun 61:50-59. 

Kim, J.W., Seung, H., Kwon, K.J., Ko, M.J., Lee, E.J., Oh, H.A., Choi, C.S., Kim, K.C., 

Gonzales, E.L., You, J.S., Choi, D.H., Lee, J., Han, S.H., Yang, S.M., Cheong, J.H., Shin, C.Y., 

Bahn, G.H. 2014. Subchronic treatment of donepezil rescues impaired social, hyperactive, and 

stereotypic behavior in valproic acid-induced animal model of autism. PLoS One 9:e104927. 

Kim, K.C., Kim, P., Go, H.S., Choi, C.S., Yang, S.I., Cheong, J.H., Shin, C.Y., Ko, K.H. 2011. 

The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. 

Toxicol Lett 201:137-142. 

Kim, S., Kim, H., Yim, Y.S., Ha, S., Atarashi, K., Tan, T.G., Longman, R.S., Honda, K., Littman, 

D.R., Choi, G.B., Huh, J.R. 2017. Maternal gut bacteria promote neurodevelopmental 

abnormalities in mouse offspring. Nature 549:528-532. 

Kirsten, T.B., Chaves-Kirsten, G.P., Chaible, L.M., Silva, A.C., Martins, D.O., Britto, L.R., Dagli, 

M.L., Torrao, A.S., Palermo-Neto, J., Bernardi, M.M. 2012. Hypoactivity of the central 

dopaminergic system and autistic-like behavior induced by a single early prenatal exposure to 

lipopolysaccharide. J Neurosci Res 90:1903-1912. 

Klein, M.S., Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., Vogel, H.J., 

Shearer, J. 2016. Metabolomic Modeling To Monitor Host Responsiveness to Gut Microbiota 

Manipulation in the BTBR(T+tf/j) Mouse. J Proteome Res 15:1143-1150. 

Knuesel, I., Chicha, L., Britschgi, M., Schobel, S.A., Bodmer, M., Hellings, J.A., Toovey, S., 

Prinssen, E.P. 2014. Maternal immune activation and abnormal brain development across CNS 

disorders. Nat Rev Neurol 10:643-660. 

Koch, H., Schmid-Hempel, P. 2011. Socially transmitted gut microbiota protect bumble bees 

against an intestinal parasite. Proc Natl Acad Sci U S A 108:19288-19292. 

This article is protected by copyright. All rights reserved.



 38

Krajmalnik-Brown, R., Lozupone, C., Kang, D.W., Adams, J.B. 2015. Gut bacteria in children 

with autism spectrum disorders: challenges and promise of studying how a complex community 

influences a complex disease. Microb Ecol Health Dis 26:26914. 

Krakowiak, P., Walker, C.K., Bremer, A.A., Baker, A.S., Ozonoff, S., Hansen, R.L., Hertz-

Picciotto, I. 2012. Maternal metabolic conditions and risk for autism and other 

neurodevelopmental disorders. Pediatrics 129:e1121-1128. 

Leclercq, S., Mian, F.M., Stanisz, A.M., Bindels, L.B., Cambier, E., Ben-Amram, H., Koren, O., 

Forsythe, P., Bienenstock, J. 2017. Low-dose penicillin in early life induces long-term changes in 

murine gut microbiota, brain cytokines and behavior. Nat Commun 8:15062. 

Leroy, F., Brann, D.H., Meira, T., Siegelbaum, S.A. 2017. Input-Timing-Dependent Plasticity in 

the Hippocampal CA2 Region and Its Potential Role in Social Memory. Neuron. 

Ley, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I. 2006. Microbial ecology: human gut microbes 

associated with obesity. Nature 444:1022-1023. 

Li, Q., Leung, Y.O., Zhou, I., Ho, L.C., Kong, W., Basil, P., Wei, R., Lam, S., Zhang, X., Law, 

A.C., Chua, S.E., Sham, P.C., Wu, E.X., McAlonan, G.M. 2015. Dietary supplementation with n-

3 fatty acids from weaning limits brain biochemistry and behavioural changes elicited by prenatal 

exposure to maternal inflammation in the mouse model. Transl Psychiatry 5:e641. 

Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, 

D., Plotsky, P.M., Meaney, M.J. 1997. Maternal care, hippocampal glucocorticoid receptors, and 

hypothalamic-pituitary-adrenal responses to stress. Science 277:1659-1662. 

Lombardo, M.V., Moon, H.M., Su, J., Palmer, T.D., Courchesne, E., Pramparo, T. 2017. 

Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the 

pathophysiology of autism spectrum disorder. Mol Psychiatry. 

Louis, P. 2012. Does the human gut microbiota contribute to the etiology of autism spectrum 

disorders? Dig Dis Sci 57:1987-1989. 

Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., Knight, R. 2012. Diversity, stability 

and resilience of the human gut microbiota. Nature 489:220-230. 

Luczynski, P., Tramullas, M., Viola, M., Shanahan, F., Clarke, G., O'Mahony, S., Dinan, T.G., 

Cryan, J.F. 2017. Microbiota regulates visceral pain in the mouse. Elife 6. 

Luczynski, P., Whelan, S.O., O'Sullivan, C., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F. 

2016. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential 

effects in the amygdala and hippocampus. Eur J Neurosci 44:2654-2666. 

Lukas, D., Clutton-Brock, T.H. 2013. The evolution of social monogamy in mammals. Science 

341:526-530. 

Lyall, K., Munger, K.L., O'Reilly, E.J., Santangelo, S.L., Ascherio, A. 2013. Maternal dietary fat 

intake in association with autism spectrum disorders. Am J Epidemiol 178:209-220. 

Lyte, M., Li, W., Opitz, N., Gaykema, R.P., Goehler, L.E. 2006. Induction of anxiety-like 

behavior in mice during the initial stages of infection with the agent of murine colonic 

hyperplasia Citrobacter rodentium. Physiol Behav 89:350-357. 

Ma, J., Prince, A.L., Bader, D., Hu, M., Ganu, R., Baquero, K., Blundell, P., Alan Harris, R., 

Frias, A.E., Grove, K.L., Aagaard, K.M. 2014. High-fat maternal diet during pregnancy 

persistently alters the offspring microbiome in a primate model. Nat Commun 5:3889. 

Mackos, A.R., Eubank, T.D., Parry, N.M., Bailey, M.T. 2013. Probiotic Lactobacillus reuteri 

attenuates the stressor-enhanced severity of Citrobacter rodentium infection. Infect Immun 

81:3253-3263. 

Malkova, N.V., Yu, C.Z., Hsiao, E.Y., Moore, M.J., Patterson, P.H. 2012. Maternal immune 

activation yields offspring displaying mouse versions of the three core symptoms of autism. 

Brain Behav Immun 26:607-616. 

Mattei, D., Ivanov, A., Ferrai, C., Jordan, P., Guneykaya, D., Buonfiglioli, A., Schaafsma, W., 

Przanowski, P., Deuther-Conrad, W., Brust, P., Hesse, S., Patt, M., Sabri, O., Ross, T.L., Eggen, 

This article is protected by copyright. All rights reserved.



 39

B.J.L., Boddeke, E., Kaminska, B., Beule, D., Pombo, A., Kettenmann, H., Wolf, S.A. 2017. 

Maternal immune activation results in complex microglial transcriptome signature in the adult 

offspring that is reversed by minocycline treatment. Transl Psychiatry 7:e1120. 

Matthews, G.A., Nieh, E.H., Vander Weele, C.M., Halbert, S.A., Pradhan, R.V., Yosafat, A.S., 

Glober, G.F., Izadmehr, E.M., Thomas, R.E., Lacy, G.D., Wildes, C.P., Ungless, M.A., Tye, K.M. 

2016. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell 

164:617-631. 

McFarlane, H.G., Kusek, G.K., Yang, M., Phoenix, J.L., Bolivar, V.J., Crawley, J.N. 2008. 

Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152-163. 

Melo, A.I., Lovic, V., Gonzalez, A., Madden, M., Sinopoli, K., Fleming, A.S. 2006. Maternal and 

littermate deprivation disrupts maternal behavior and social-learning of food preference in 

adulthood: tactile stimulation, nest odor, and social rearing prevent these effects. Dev Psychobiol 

48:209-219. 

Meyer, U., Feldon, J. 2010. Epidemiology-driven neurodevelopmental animal models of 

schizophrenia. Prog Neurobiol 90:285-326. 

Meyer, U., Feldon, J., Schedlowski, M., Yee, B.K. 2005. Towards an immuno-precipitated 

neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29:913-947. 

Meyer-Lindenberg, A., Tost, H. 2012. Neural mechanisms of social risk for psychiatric disorders. 

Nat Neurosci 15:663-668. 

Modabbernia, A., Velthorst, E., Reichenberg, A. 2017. Environmental risk factors for autism: an 

evidence-based review of systematic reviews and meta-analyses. Mol Autism 8:13. 

Moeller, A.H., Caro-Quintero, A., Mjungu, D., Georgiev, A.V., Lonsdorf, E.V., Muller, M.N., 

Pusey, A.E., Peeters, M., Hahn, B.H., Ochman, H. 2016. Cospeciation of gut microbiota with 

hominids. Science 353:380-382. 

Moldrich, R.X., Leanage, G., She, D., Dolan-Evans, E., Nelson, M., Reza, N., Reutens, D.C. 

2013. Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. 

Behav Brain Res 257:253-264. 

Moller, A.P. 1993. A fungus infecting domestic flies manipulates sexual behaviour of its host. . 

Behav Ecol Sociobiol 33:403–407. 

Moy, S.S., Nadler, J.J., Young, N.B., Perez, A., Holloway, L.P., Barbaro, R.P., Barbaro, J.R., 

Wilson, L.M., Threadgill, D.W., Lauder, J.M., Magnuson, T.R., Crawley, J.N. 2007. Mouse 

behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res 176:4-20. 

Nadebaum, C., Anderson, V., Vajda, F., Reutens, D., Barton, S., Wood, A. 2011. The Australian 

brain and cognition and antiepileptic drugs study: IQ in school-aged children exposed to sodium 

valproate and polytherapy. J Int Neuropsychol Soc 17:133-142. 

Nakai, N., Nagano, M., Saitow, F., Watanabe, Y., Kawamura, Y., Kawamoto, A., Tamada, K., 

Mizuma, H., Onoe, H., Watanabe, Y., Monai, H., Hirase, H., Nakatani, J., Inagaki, H., Kawada, 

T., Miyazaki, T., Watanabe, M., Sato, Y., Okabe, S., Kitamura, K., Kano, M., Hashimoto, K., 

Suzuki, H., Takumi, T. 2017. Serotonin rebalances cortical tuning and behavior linked to autism 

symptoms in 15q11-13 CNV mice. Sci Adv 3:e1603001. 

Naviaux, J.C., Schuchbauer, M.A., Li, K., Wang, L., Risbrough, V.B., Powell, S.B., Naviaux, 

R.K. 2014. Reversal of autism-like behaviors and metabolism in adult mice with single-dose 

antipurinergic therapy. Transl Psychiatry 4:e400. 

Neufeld, K.M., Kang, N., Bienenstock, J., Foster, J.A. 2011. Reduced anxiety-like behavior and 

central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255-264, e119. 

Newell, C., Bomhof, M.R., Reimer, R.A., Hittel, D.S., Rho, J.M., Shearer, J. 2016. Ketogenic 

diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism 

7:37. 

This article is protected by copyright. All rights reserved.



 40

O'Mahony, S.M., Marchesi, J.R., Scully, P., Codling, C., Ceolho, A.M., Quigley, E.M., Cryan, 

J.F., Dinan, T.G. 2009. Early life stress alters behavior, immunity, and microbiota in rats: 

implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65:263-267. 

Oettl, L.L., Ravi, N., Schneider, M., Scheller, M.F., Schneider, P., Mitre, M., da Silva Gouveia, 

M., Froemke, R.C., Chao, M.V., Young, W.S., Meyer-Lindenberg, A., Grinevich, V., 

Shusterman, R., Kelsch, W. 2016. Oxytocin Enhances Social Recognition by Modulating 

Cortical Control of Early Olfactory Processing. Neuron 90:609-621. 

Ogbonnaya, E.S., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F., O'Leary, O.F. 2015. Adult 

Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol Psychiatry 78:e7-9. 

Okuyama, T., Kitamura, T., Roy, D.S., Itohara, S., Tonegawa, S. 2016. Ventral CA1 neurons 

store social memory. Science 353:1536-1541. 

Parracho, H.M., Bingham, M.O., Gibson, G.R., McCartney, A.L. 2005. Differences between the 

gut microflora of children with autistic spectrum disorders and that of healthy children. J Med 

Microbiol 54:987-991. 

Partty, A., Kalliomaki, M., Wacklin, P., Salminen, S., Isolauri, E. 2015. A possible link between 

early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a 

randomized trial. Pediatr Res 77:823-828. 

Patterson, P.H. 2009. Immune involvement in schizophrenia and autism: etiology, pathology and 

animal models. Behav Brain Res 204:313-321. 

Patterson, P.H. 2011. Maternal infection and immune involvement in autism. Trends Mol Med 

17:389-394. 

Pendyala, G., Chou, S., Jung, Y., Coiro, P., Spartz, E., Padmashri, R., Li, M., Dunaevsky, A. 

2017. Maternal Immune Activation Causes Behavioral Impairments and Altered Cerebellar 

Cytokine and Synaptic Protein Expression. Neuropsychopharmacology 42:1435-1446. 

Perez-Burgos, A., Wang, B., Mao, Y.K., Mistry, B., McVey Neufeld, K.A., Bienenstock, J., 

Kunze, W. 2013. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency 

facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol 304:G211-220. 

Rincel, M., Lepinay, A.L., Delage, P., Fioramonti, J., Theodorou, V.S., Laye, S., Darnaudery, M. 

2016. Maternal high-fat diet prevents developmental programming by early-life stress. Transl 

Psychiatry 6:e966. 

Rogan, S.C., Roth, B.L. 2011. Remote control of neuronal signaling. Pharmacol Rev 63:291-315. 

Roullet, F.I., Wollaston, L., Decatanzaro, D., Foster, J.A. 2010. Behavioral and molecular 

changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. 

Neuroscience 170:514-522. 

Ruskin, D.N., Murphy, M.I., Slade, S.L., Masino, S.A. 2017. Ketogenic diet improves behaviors 

in a maternal immune activation model of autism spectrum disorder. PLoS One 12:e0171643. 

Sandi, C., Haller, J. 2015. Stress and the social brain: behavioural effects and neurobiological 

mechanisms. Nat Rev Neurosci 16:290-304. 

Scalabrin, D., Harris, C., Johnston, W.H., Berseth, C.L. 2017. Long-term safety assessment in 

children who received hydrolyzed protein formulas with Lactobacillus rhamnosus GG: a 5-year 

follow-up. Eur J Pediatr 176:217-224. 

Scattoni, M.L., Gandhy, S.U., Ricceri, L., Crawley, J.N. 2008. Unusual repertoire of 

vocalizations in the BTBR T+tf/J mouse model of autism. PLoS One 3:e3067. 

Schaafsma, S.M., Gagnidze, K., Reyes, A., Norstedt, N., Mansson, K., Francis, K., Pfaff, D.W. 

2017. Sex-specific gene-environment interactions underlying ASD-like behaviors. Proc Natl 

Acad Sci U S A 114:1383-1388. 

Schneider, T., Przewlocki, R. 2005. Behavioral alterations in rats prenatally exposed to valproic 

acid: animal model of autism. Neuropsychopharmacology 30:80-89. 

This article is protected by copyright. All rights reserved.



 41

Schwartzer, J.J., Careaga, M., Onore, C.E., Rushakoff, J.A., Berman, R.F., Ashwood, P. 2013. 

Maternal immune activation and strain specific interactions in the development of autism-like 

behaviors in mice. Transl Psychiatry 3:e240. 

Sharon, G., Segal, D., Ringo, J.M., Hefetz, A., Zilber-Rosenberg, I., Rosenberg, E. 2010. 

Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl 

Acad Sci U S A 107:20051-20056. 

Silverman, J.L., Yang, M., Lord, C., Crawley, J.N. 2010. Behavioural phenotyping assays for 

mouse models of autism. Nat Rev Neurosci 11:490-502. 

Siuda, E.R., Al-Hasani, R., McCall, J.G., Bhatti, D.L., Bruchas, M.R. 2016. Chemogenetic and 

Optogenetic Activation of Galphas Signaling in the Basolateral Amygdala Induces Acute and 

Social Anxiety-Like States. Neuropsychopharmacology 41:2011-2023. 

Skuse, D.H., Lori, A., Cubells, J.F., Lee, I., Conneely, K.N., Puura, K., Lehtimaki, T., Binder, 

E.B., Young, L.J. 2014. Common polymorphism in the oxytocin receptor gene (OXTR) is 

associated with human social recognition skills. Proc Natl Acad Sci U S A 111:1987-1992. 

Slykerman, R.F., Hood, F., Wickens, K., Thompson, J.M.D., Barthow, C., Murphy, R., Kang, J., 

Rowden, J., Stone, P., Crane, J., Stanley, T., Abels, P., Purdie, G., Maude, R., Mitchell, E.A., 

Probiotic in Pregnancy Study, G. 2017. Effect of Lactobacillus rhamnosus HN001 in Pregnancy 

on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-

controlled Trial. EBioMedicine 24:159-165. 

Smith, A.S., Williams Avram, S.K., Cymerblit-Sabba, A., Song, J., Young, W.S. 2016. Targeted 

activation of the hippocampal CA2 area strongly enhances social memory. Mol Psychiatry 

21:1137-1144. 

Stilling, R.M., Bordenstein, S.R., Dinan, T.G., Cryan, J.F. 2014. Friends with social benefits: 

host-microbe interactions as a driver of brain evolution and development? Front Cell Infect 

Microbiol 4:147. 

Stilling, R.M., Ryan, F.J., Hoban, A.E., Shanahan, F., Clarke, G., Claesson, M.J., Dinan, T.G., 

Cryan, J.F. 2015. Microbes & neurodevelopment--Absence of microbiota during early life 

increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun 50:209-

220. 

Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., Koga, Y. 2004. 

Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress 

response in mice. J Physiol 558:263-275. 

Sullivan, E.L., Riper, K.M., Lockard, R., Valleau, J.C. 2015. Maternal high-fat diet programming 

of the neuroendocrine system and behavior. Horm Behav 76:153-161. 

Sylvia, K.E., Jewell, C.P., Rendon, N.M., St John, E.A., Demas, G.E. 2017. Sex-specific 

modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav Immun 60:51-

62. 

Szyszkowicz, J.K., Wong, A., Anisman, H., Merali, Z., Audet, M.C. 2017. Implications of the 

gut microbiota in vulnerability to the social avoidance effects of chronic social defeat in male 

mice. Brain Behav Immun 66:45-55. 

Terry, L.M., Johanson, I.B. 1996. Effects of altered olfactory experiences on the development of 

infant rats' responses to odors. Dev Psychobiol 29:353-377. 

Theis, K.R., Venkataraman, A., Dycus, J.A., Koonter, K.D., Schmitt-Matzen, E.N., Wagner, A.P., 

Holekamp, K.E., Schmidt, T.M. 2013. Symbiotic bacteria appear to mediate hyena social odors. 

Proc Natl Acad Sci U S A 110:19832-19837. 

Tochitani, S., Ikeno, T., Ito, T., Sakurai, A., Yamauchi, T., Matsuzaki, H. 2016. Administration 

of Non-Absorbable Antibiotics to Pregnant Mice to Perturb the Maternal Gut Microbiota Is 

Associated with Alterations in Offspring Behavior. PLoS One 11:e0138293. 

This article is protected by copyright. All rights reserved.



 42

Tung, J., Barreiro, L.B., Burns, M.B., Grenier, J.C., Lynch, J., Grieneisen, L.E., Altmann, J., 

Alberts, S.C., Blekhman, R., Archie, E.A. 2015. Social networks predict gut microbiome 

composition in wild baboons. Elife 4. 

Twining, R.C., Vantrease, J.E., Love, S., Padival, M., Rosenkranz, J.A. 2017. An intra-amygdala 

circuit specifically regulates social fear learning. Nat Neurosci 20:459-469. 

Vuillermot, S., Luan, W., Meyer, U., Eyles, D. 2017. Vitamin D treatment during pregnancy 

prevents autism-related phenotypes in a mouse model of maternal immune activation. Mol 

Autism 8:9. 

Wahlsten, D., Metten, P., Crabbe, J.C. 2003. Survey of 21 inbred mouse strains in two 

laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and 

absent corpus callosum. Brain Res 971:47-54. 

Weiser, M.J., Mucha, B., Denheyer, H., Atkinson, D., Schanz, N., Vassiliou, E., Benno, R.H. 

2016. Dietary docosahexaenoic acid alleviates autistic-like behaviors resulting from maternal 

immune activation in mice. Prostaglandins Leukot Essent Fatty Acids 106:27-37. 

Williams, B.L., Hornig, M., Parekh, T., Lipkin, W.I. 2012. Application of novel PCR-based 

methods for detection, quantitation, and phylogenetic characterization of Sutterella species in 

intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio 3. 

Wohr, M., Roullet, F.I., Crawley, J.N. 2011. Reduced scent marking and ultrasonic vocalizations 

in the BTBR T+tf/J mouse model of autism. Genes Brain Behav 10:35-43. 

Wu, W.L., Adams, C.E., Stevens, K.E., Chow, K.H., Freedman, R., Patterson, P.H. 2015. The 

interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in 

regulating behaviors in the offspring. Brain Behav Immun 46:192-202. 

Wu, W.L., Hsiao, E.Y., Yan, Z., Mazmanian, S.K., Patterson, P.H. 2017. The placental 

interleukin-6 signaling controls fetal brain development and behavior. Brain Behav Immun 

62:11-23. 

Xiao, L., Feng, Q., Liang, S., Sonne, S.B., Xia, Z., Qiu, X., Li, X., Long, H., Zhang, J., Zhang, D., 

Liu, C., Fang, Z., Chou, J., Glanville, J., Hao, Q., Kotowska, D., Colding, C., Licht, T.R., Wu, D., 

Yu, J., Sung, J.J., Liang, Q., Li, J., Jia, H., Lan, Z., Tremaroli, V., Dworzynski, P., Nielsen, H.B., 

Backhed, F., Dore, J., Le Chatelier, E., Ehrlich, S.D., Lin, J.C., Arumugam, M., Wang, J., 

Madsen, L., Kristiansen, K. 2015. A catalog of the mouse gut metagenome. Nat Biotechnol 

33:1103-1108. 

Yang, C., Fujita, Y., Ren, Q., Ma, M., Dong, C., Hashimoto, K. 2017. Bifidobacterium in the gut 

microbiota confer resilience to chronic social defeat stress in mice. Sci Rep 7:45942. 

Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, 

R.F., Mazmanian, S.K., Hsiao, E.Y. 2015. Indigenous bacteria from the gut microbiota regulate 

host serotonin biosynthesis. Cell 161:264-276. 

Zeng, L., Zeng, B., Wang, H., Li, B., Huo, R., Zheng, P., Zhang, X., Du, X., Liu, M., Fang, Z., 

Xu, X., Zhou, C., Chen, J., Li, W., Guo, J., Wei, H., Xie, P. 2016. Microbiota Modulates 

Behavior and Protein Kinase C mediated cAMP response element-binding protein Signaling. Sci 

Rep 6:29998. 

Zerbo, O., Qian, Y., Yoshida, C., Grether, J.K., Van de Water, J., Croen, L.A. 2015. Maternal 

Infection During Pregnancy and Autism Spectrum Disorders. J Autism Dev Disord 45:4015-4025. 

 

  

 

 

 

This article is protected by copyright. All rights reserved.



 43

 

 

 

Table 1. Summary of the primary gut microbial alterations across the different mouse models of ASD. 

ASD model Strain Age Sex Vendor Control Sample source Trend Bacterial taxa Fold Reference

Akkermansia muciniphila 919.00

Methanobrevibacter spp. 3.85

Bifidobacterium spp. 16.09

Enterobacteriaceae 3.34

Clostridium cluster I 1.77

Clostridium cluster XI 1.40

Akkermansia muciniphila 6960.00

Clostridium cluster I 3.21

Bacteroides/Prevotella spp. 1.92

Bifidobacterium spp. 10.95

Clostridium cluster XI 2.64

Enterobacteriaceae 2.18

Methanobrevibacter spp. 1.58

Verrucomicrobiaceae (Verrucomicrobiales) 13.77

Akkermansia 13.77

Erysipelotrichaceae (Erysipelotrichales) 6.45

Bilophila 3.48

Bacteroidaceae (Bacteroidales) 2.91

Bacteroides 2.91

Coriobacteriaceae (Coriobacteriales) 2.06

S24-7 (Bacteroidales) 1.52

S24-7 Uncultured bacterium 1.52

Porphyromonadaceae (Bacteroidales) 16.55

Odoribacter 16.19

Lachnospiraceae Incertae Sedis 5.26

Blautia 3.94

Coprococcus 3.63

Ruminococcus 2.52

Lachnospiraceae (Clostridiales) 2.16

Desulfovibrionaceae (Desulfovibrionales) 2.06

Family XIII (Clostridiales) 1.95

Ruminococcaceae Incertae  Sedis 1.91

Bifidobacteriaceae (Bifidobacteriales) Absence

Bifidobacterium Absence

Parabacteroides Absence

Rikenella Absence

Acetitomaculum Absence

Desulfovibrio Absence

Lactobacillus 22.70

Coprobacillus 9.00

Bacteroides 8.70

U. Helicobacteraceae 4.20

Parabacteroides 3.70

Ruminococcus 0.60

Dehalobacterium 0.40

Desulfovibrio 0.10

Coprobacillus 244.00

U. Enterobacteriaceae 109.00

U. Desulfovibrionaceae 17.30

Bacteroides 10.50

Parabacteroides 8.10

Sutterella 4.20

Akkermansia 3.10

Prevotella 2.80

AF12 (Rikenellaceae) 0.40

Oscillospira 0.40

Dehalobacterium 0.30

U. F16 (TM7) 0.20

Lachnospiraceae 4.04

Porphyromonadaceae N/A

Prevotellaceae N/A

Bacteroidales N/A

Ruminococcaceae N/A

Erysipelotricheaceae N/A

Alcaligenaceae N/A

Increase Erysipelotrichales Presence

Desulfovibrionales 2.00

Bacteroidales 1.84

Lactobacillus reuteri 9.24

Parabacteroides distasonis 5.63

Helicobacter hepaticus 2.84

Bacteroides uniformis 2.65

Olsenella unclassified 1.90

Collinsella unclassified 1.75

Bifidobacterium pseudolongum 1.71

Lactobacillus johnsonii 1.43

MIA: maternal immune activation; VPA: valproic acid; JAX: The Jackson Laboratory; CR: Charles River Laboratories

Male

Male

BTBR BTBR T+tf/j

7 weeks

12 months

14 weeks

MIA

VPA

MHFD

C57BL/6

BALB/c

C57BL/6J

3-6 weeks

4 weeks

7-8 weeks

Female

Male

Both

Both

Male JAX

CR

CR

JAX

JAX

JAX

JAX

Newell et al., 2016C57BL/6

Caecal

Fecal

C57BL/6J Fecal

Increase

Decrease

Increase

Decrease

C57BL/6J Caecal

Coretti et al., 2017

Golubeva et al., 2017

Increase

Decrease

C57BL/6J Fecal

Increase

Decrease

Increase

Decrease

BALB/c Caecal

C57BL/6J Fecal

Hsiao et al., 2013

de Thieje et al., 2014

Buffington et al, 2016

Increase

Decrease

Decrease

Decrease

C57BL/6 Fecal
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Table 3. Neuronal molecules that are affected in GF rodents in different brain regions. All results are comparing to SPF control rodents.

Type of molecule Species Strain Sex Age Brain subregion Molecule Level Changes Reference

Swiss Male 6-9 weeks Hippocampus 5-HIAA Metabolite Increase Clarke et al., 2013

Swiss Male 6-9 weeks Hippocampus 5-HT Neurotransmitter Increase Clarke et al., 2013

NMRI Male 8-10 weeks Striatum 5-HIAA/5-HT Ratio Increase Diaz Heijtz et al., 2011

Swiss-Webster Female 8 weeks Hippocampus (dorsal DG) 5-HT1A mRNA Decrease Neufeld et al., 2011

Swiss Male 6-9 weeks Plasma Tryptophan Amino acid Increase Clarke et al., 2013

Rat F344 Male 11-13 weeks Hippocampus 5-HT Neurotransmitter Decrease Crumeyrolle-Arias et al., 2014

NMRI Male 8-10 weeks Striatum DOPAC/DA Ratio Increase Diaz Heijtz et al., 2011

NMRI Male 8-10 weeks Hippocampus (dorsal DG) Drd1a mRNA Increase Diaz Heijtz et al., 2011

HVA Metabolite

HVA/DA Ratio

HVA Metabolite

HVA/DA Ratio

HVA Metabolite

HVA/DA Ratio

Mouse NMRI Male 8-10 weeks Striatum MHPG/NA Ratio Increase Diaz Heijtz et al., 2011

Cortex NR1 Protein Decrease

Cortex NR2A Protein Decrease

Hippocampus NR2A Protein Decrease

Swiss-Webster Female 8 weeks Amygdala (CeA) NR2B mRNA Decrease Neufeld et al., 2011

BALB/C Male 9 weeks Cortex BDNF Protein Decrease Sudo et al., 2004

BDNF

BDNF (exon I)

BDNF (exon IV)

BDNF (exon IX)

BDNF (exon VI)

NMRI Male 8-10 weeks Amygdala (BLA) BDNF mRNA Decrease Diaz Heijtz et al., 2011

NMRI Male 8-10 weeks Hippocampus (dorsal CA1) BDNF mRNA Decrease Diaz Heijtz et al., 2011

Swiss-Webster Female 5-6 weeks Hippocampus (dorsal CA1) BDNF Protein Decrease Gareau et al., 2011

Swiss-Webster Female 8 weeks Hippocampus (dorsal DG) BDNF mRNA Increase Neufeld et al., 2011

BALB/C Male 9 weeks Hippocampus BDNF Protein Decrease Sudo et al., 2004

Swiss Male 6-9 weeks Hippocampus BDNF mRNA Decrease Clarke et al., 2013

BALB/C Male 9 weeks ACTH Hormone Restraint stress induced increase Sudo et al., 2004

BALB/C Male 9 weeks Corticosterone Hormone Restraint stress induced increase Sudo et al., 2004

Swiss Both 6-9 weeks Corticosterone Hormone Acute novel cage induced increase Clarke et al., 2013

Swiss-Webster Female 8 weeks Corticosterone Hormone Basal level increase Neufeld et al., 2011

Hippocampus (CA1) GR mRNA Decrease

Hippocampus (DG) GR mRNA Decrease

Hypothalamus (PVN) CRF mRNA Increase

Serum Corticosterone Hormone Open-field test induced increase

Anterior olfactory region NGF1-A mRNA Decrease

Orbital frontal cortex NGF1-A mRNA Decrease

Striatum PSD-95 Protein Increase

Striatum Synaptophysin Protein Increase

Swiss-Webster Male 12 weeks Amygdala NGF1-A mRNA Decrease Arentsen et al., 2015

Swiss-Webster Female 5-6 weeks Hippocampus (dorsal) c-Fos Protein Decrease Gareau et al., 2011

Swiss Male 10 weeks Dorsal raphe ∆FosB Protein Increase Campos et al., 2016

E18.5 days Fetal brain Occludin 

Claudin-5

Occludin 

Claudin-5

Occludin 

Claudin-5

Occludin 

BLA: basolateral amygdala; DG: dentate gyrus; PVN: paraventricular nucleus of hypothalamus

BALB/C

Mouse

Mouse

Mouse

Crumeyrolle-Arias et al., 2014Rat F344 Male 11-13 weeks

Frontal cortex

Hippocampus

Striatum

Decrease Arentsen et al., 2015

Sudo et al., 20049 weeks

mRNA12 weeks Amygdala

Stress-related

Mouse

Rat F344 Male

Mouse

Mouse

Mouse

Both

NMRI

Striatum

Hippocampus (dorsal)

Frontal cortex 

8-10 weeks
C57BL/6J; NMRI Protein

Neurotransmission-related

Neurotrophic factor

Tight junction protein Braniste et al., 2014Decrease

Diaz Heijtz et al., 2011

Swiss-Webster Male

Decrease

Crumeyrolle-Arias et al., 2014

Plasma

Male 8-10 weeks

Synaptic-related

11-13 weeks
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Figure 1. Bi-directional approaches toward understanding the complicated gut microbial contributing factors 
and gut–brain axis to social behavior in rodent models. (A) Top-down approach: Studying the 

gastrointestinal (GI) complications in the rodent models of ASD allows researchers to understand the 

association between the bacterial composition and the behavioral phenotypes. The models include BTBR 
mice, maternal poly(I:C) injection (termed maternal immune activation (MIA)), maternal valproic acid (VPA) 
and maternal high-fat diet (MHFD) offspring. (B) Bottom-up approach: Germ-free (GF) rodents, antibiotics, 
probiotics and pathogens treatment are tools to understand the effect of gut bacteria on social behavior by 
disrupting the bacterial colonization in the gut. USV: ultrasonic vocalization. A portion of this figure was 

created using the Mind the Graph platform: www.mindthe graph.com.  
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Figure 2. Brain circuits controlling social behavior and affected brain regions when loss of gut microbiota. (A) 
By comparing GF animals with SPF animals, morphology, transcriptional, and neuronal molecules are altered 
in several brain regions when loss of gut microbiota. (B) Optogenetics, chemogenetics and fiber photometry 

demonstrated that several brain subregions and circuits are responsible for social behavior. ACC: anterior 
cingulate cortex; AO: anterior olfactory region; BLA: basolateral amygdala; dHPC: dorsal hippocampus; 

DRN: Dorsal raphe nucleus; FC: frontal cortex; LA: lateral amygdala; MeA: medial amygdala; NAc: nucleus 
accumbens; OFC: orbital frontal cortex; PAG: periaqueductal gray; PVN: paraventricular nucleus of 
hypothalamus; PFC: prefrontal cortex; vHPC: ventral hippocampus; VTA: ventral tegmental area.  
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