8 research outputs found

    Preparación y caracterización fisicoquímica de liposomas tópicos cargados con quercetina

    Get PDF
    Antecedentes: el uso de extractos de hierbas en los últimos años ha sido de gran interés para los investigadores de todo el mundo. Las propiedades de la quercetina antoxidante juegan un papel importante en varios campos de la salud. Objetivo: debido a la baja permeabilidad de la piel y la escasa solubilidad en medios acuáticos, se ha utilizado la formulación de liposomas de quercetina para obtener el uso tópico de esta sustancia. Métodos: En este estudio, la quercetina liposomal se preparó mediante el método de fusión y se evaluaron las características fisicoquímicas de la formulación, incluido el tamaño de partícula, la eficacia de incorporación y la liberación de fármacos in vitro. Resultados: El tamaño de partícula de las formulaciones estuvo entre 7,68 y 58,1 nm. La eficiencia de incorporación de las formulaciones estuvo en el rango de 80,55 a 96,80 por ciento. La liberación de fármacos in vitro de formulaciones fue de aproximadamente 60 a 70 por ciento. Conclusión: De acuerdo con los resultados obtenidos, se puede decir que el uso de esta sustancia como una formulación liposomal puede mejorar las propiedades fisicoquímicas del fármaco en las condiciones de laboratorio y proporcionarlo como un candidato adecuado para estudios in vivo y clínicos adicionales.Background: The use of herbal extracts in recent years has been of great interest to researchers around the world. Quercetin antoxidant properties play an important role in various fields of health. Objective: Due to the low skin permeability and poor solubility in aqua media, quercetin liposome formulation has been used to obtain topical use of this substance. Methods: In this study, liposomal quercetin was prepared by fusion method and the physicochemical characteristics of the formulation, including particle size, incorporation efficiency and in vitro drug release were evaluated. Results: The particle size of formulations were between 7.68 to 58.1 nm. The incorporation efficiency of formulations were in range of 80.55 to 96.80 percent. In vitro drug release of formulations were about 60 to 70 percent. Conclusion: According to the results obtained, it can be said that the use of this substance as a liposomal formulation can improve physicochemical properties of the drug in the laboratory conditions and provide it as a suitable candidate for further in vivo and clinical studies.Financial support of this study was provided by Ahvaz Jundishapur University of Medical Sciences

    New Natural Marine Antacid Drug from Cuttlebone

    Get PDF
    Background: Antacids are the most commonly used medications for fast symptomatic relief of gastric disorders. Because of adverse effects, low efficiency and the high cost of some chemical antacids, identifying a natural medicine with high efficiency and low cost seems useful. Therefore, the aim of the present study was to prepare antacid tablets from Cuttlefish bone and assessment of its antacid properties. Methods: 24 different formulations of cuttlefish bone were prepared by direct compression using different fillers (starch, cellulose, lactose, and mixture of those) in different ratios of the drug. Characterization of powders and tablets was done on all formulations and marketed dosage forms (calcium carbonate and Al-Mg). Results: Weight uniformity, hardness, and friability of all formulations were in acceptable range. Tablets prepared by calcined cuttlebone disintegrated in longer time due to their higher hardness which were mostly higher than 5 Kg. Also, disintegration time of formulations 50-50 (lower dose of cuttlebone) was less than other tablets (2 minutes or less). Results of antacid capacity showed that formulations 90-10 and 80-20 raise the acidic pH of the medium above 7.5, which were the same as or more than the capacity of the marketed tablets. Conclusion: Tablets were prepared by 90 or 80% of either calcined or non-calcined cuttlebone showed the highest antacid capacity

    Preparation and physicochemical characterization of N-succinyl chitosan-coated liposomes for oral delivery of grape seed extract and evaluation of its effect on pulmonary fibrosis induced by bleomycin in rats

    Get PDF
    Objective(s): This study aimed to develop an oral succinyl chitosan-coated liposomal formulation containing grape seed extract and assess its therapeutic efficacy in rats with bleomycin-induced pulmonary fibrosis. Materials and Methods: N-succinyl chitosan was synthesized, and the liposomal formulations were prepared and characterized regarding phenolic content assay and morphology. Size, zeta potential, in vitro drug release, and stability. Pulmonary fibrosis was induced by intratracheal bleomycin injection, and hydroxyproline measurements, lung weight, animal body weight, as well as histopathological studies were performedResults: Succinyl chitosan increases the physical stability of the formulation, especially in acidic conditions. Drug release studies revealed that 66.27% of the loaded drug was released from CF2 in an acidic medium in 2 hr, but 92.31% of the drug was released in 8 hr in a pH=7 medium. An in vivo study demonstrated that rats exposed to bleomycin significantly lost weight, while those treated with CF2 (400 mg/kg) partially regained weight. Bleomycin treatment increased the mean lung weight and the amount of hydroxyproline in the lungs; these values were significantly decreased in the group treated with 400 mg/kg CF2 (P<0.05). Histopathological examination confirmed that treatment with 400 mg/kg CF2 improved lung fibrosis. Conclusion: In rats, oral administration of N-succinyl chitosan-coated liposomes containing grape seed extract at the 400 mg/kg dose ameliorates bleomycin-induced pulmonary fibrosis

    Effects of Silymarin-Loaded Nanoparticles on HT-29 Human Colon Cancer Cells

    No full text
    Background and objective: Previous studies have demonstrated the anti-cancer effects of silymarin (SLM). However, the low bioavailability of SLM has restricted its use. This study investigated the toxic effect of nanostructured SLM encapsulated in micelles (Nano-SLM) on the growth of the HT-29 human colon cancer cell line. Materials and methods: HT-29 cells were treated with 25 μM/mL of SLM or Nano-SLM for 48 h. MTT and colony formation assays were used to assess the cytotoxicity and proliferation of HT-29 cells, respectively. The cells were stained with annexin V/PI for assessment of apoptosis. Results: MTT assays revealed that Nano-SLM treatment was able to exert a more pronounced toxic effect on the HT-29 cells as compared to free SLM treatment (p &lt; 0.01). In the Nano-SLM-treated cells, colony numbers were significantly reduced in comparison to the free SLM-treated cells (p &lt; 0.01). Apoptotic and necrotic indexes of Nano-SLM-treated HT-29 cells were also significantly increased in comparison to those of the free SLM-treated cells (p &lt; 0.01). The viability, proliferation and apoptosis of healthy cells (NIH-3T3 cells) were not changed in response to Nano-SLM or SLM. Conclusions: Our results indicate that Nano-SLM enhances the anti-cancer effects of SLM against human colon cancer cells

    Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes

    No full text
    Griseofulvin is an antifungal drug and is available as oral dosage forms. Development of topical treatment could be advantageous for superficial fungal infections of the skin. In this study, films prepared from the incorporation of griseofulvin-loaded liposomes in chitosan film for topical drug delivery in superficial fungal infections. The properties of the films were characterized regarding mechanical properties, swelling, ability to transmit vapor, drug release, thermal behavior, and antifungal efficacy against Microsporum gypseum and Epidermophyton floccosum. The presence of liposomes led to decreased mechanical properties but lower swelling ratio. Higher amount of drug permeation and rate of flux were obtained by liposomes incorporated in films compared to liposomal formulations. Antifungal efficacy of formulations was confirmed against two species of dermatophytes in vitro. Therefore, two concepts of using vesicular carrier systems and biopolymeric films have been combined and this topical novel composite film has the potential for griseofulvin delivery to superficial fungal infections

    Effect of Topical Liposomes Containing Paromomycin Sulfate in the Course of Leishmania major Infection in Susceptible BALB/c Mice▿

    No full text
    The aim of this study was to evaluate the antileishmanial effects of topical liposomal paromomycin sulfate (PM) in Leishmania major-infected BALB/c mice. Liposomes containing 10 or 15% PM (Lip-PM-10 and Lip-PM-15, respectively) were prepared by the fusion method and were characterized for their size and encapsulation efficiency. The penetration of PM from the liposomal PM formulations (LPMFs) through and into skin was evaluated in vitro with Franz diffusion cells fitted with mouse skin at 37°C for 8 h. The in vitro permeation data showed that almost 15% of the LPMFs applied penetrated the mouse skin, and the amount retained in the skin was about 60% for both formulations. The 50% effective doses of Lip-PM-10 and Lip-PM-15 against L. major promastigotes in culture were 65.32 and 59.73 μg/ml, respectively, and those against L. major amastigotes in macrophages were 24.64 and 26.44 μg/ml, respectively. Lip-PM-10 or Lip-PM-15 was used topically twice a day for 4 weeks to treat L. major lesions on BALB/c mice, and the results showed a significantly (P < 0.001) smaller lesion size in the mice in the treated groups than in the mice in the control group, which received either empty liposomes or phosphate-buffered saline (PBS). Eight weeks after the beginning of the treatment, every mouse treated with LPMFs was completely cured. The spleen parasite burden was significantly (P < 0.001) lower in mice treated with Lip-PM-10 or Lip-PM-15 than in mice treated with PBS or control liposomes, but no significant difference was seen between the two groups treated with either Lip-PM-10 or Lip-PM-15. The results suggest that topical liposomal PM may be useful for the treatment of cutaneous leishmaniasis
    corecore