11 research outputs found

    Relative effects of nutrient enrichment and grazing on epiphyton-macrophyte (Zostera marina L.) dynamics

    Get PDF
    Dissolved nutrient concentrations and invertebrate grazing activity regulate epiphytic biomass. Because epiphyton may limit light and carbon at leaf surfaces and the consequent productivity of submerged macrophytes, factors which influence epiphytic biomass may indirectly affect macrophyte abundance. I measured the simultaneous effects of water column nutrients (ambient or 3x ambient concentrations of nitrogen and phosphorus) and grazing (presence or absence of epifaunal community) on epiphyton and macrophytes seasonally in eelgrass (Zostera marina L.) microcosms on lower Chesapeake Bay. Grazing was more important than nutrients in controlling accrual of total epiphytic biomass, although effects on epiphytic components varied; numbers of diatoms responded to grazing, whereas numbers of cyanobacteria responded to nutrients. Numbers of heterotrophic microflagellates mimicked those of bacteria. The indirect effects of nutrients and grazing on macrophytes depended upon the relative magnitude of each factor and the physiological demands of the macrophyte. Under low grazer densities of early summer, macrophyte production (g m&\sp{lcub}-2{rcub}& d&\sp{lcub}-1{rcub}&) was reduced with grazer removal and nutrient enrichment independently. In contrast, under high densities of late summer, production was reduced by enrichment with grazers absent only. There were no macrophyte responses to treatment during the spring and fall, regardless of differences in epiphytic biomass; this may have been related to comparatively low light requirements of eelgrass at low temperatures. I used a simulation model to extrapolate microcosm results to predictions for community persistence. The model included ranges of environmental variables specific to lower Chesapeake Bay, where declines in eelgrass abundance in recent decades were correlated with nutrient enrichment, reduced grazer populations, and increased turbidity. Simulations indicated that neither nutrient enrichment nor loss of grazers alone would limit eelgrass survival, but together would cause community instability. Simulations indicated further that with grazers present, nutrient enrichment with a slight decrease in submarine irradiance would cause macrophyte loss. Measured rates of epiphytic accrual on artificial substrata in situ suggested that with grazers present, light reduction actually reduced the absolute rates of biomass accumulation despite nutrient enrichment. Predictions for macrophyte community stability must thus consider the relative effects of both direct (acting on macrophytes) and indirect (acting via epiphyton) environmental controls

    Status, Trends, and Conservation of Eelgrass in Atlantic Canada and the Northeastern United States: Workshop Report

    Get PDF
    Eelgrass (Zostera marina L) is the dominant seagrass occurring in eastern Canada and the northeastern United States, where it often forms extensive meadows in coastal and estuarine areas. Eelgrass beds are extremely productive and provide many valuable ecological functions and ecosystem services. They serve as critical feeding and nursery habitat for a wide variety of commercially and recreationally important fish and shellfish and as feeding areas for waterfowl and other waterbirds. Eelgrass detritus is also transported considerable distances to fuel offshore food webs. In addition, eelgrass beds stabilize bottom sediments, dampen wave energy, absorb nutrients from surrounding waters, and retain carbon through burial

    Update on a Continuing Saga: Eelgrass and Green Crabs in Casco Bay, Maine (Poster)

    Get PDF
    https://digitalcommons.usm.maine.edu/cbep-graphics-maps-posters/1035/thumbnail.jp

    Applying cumulative effects to strategically advance large-scale ecosystem restoration

    Get PDF
    International efforts to restore degraded ecosystems will continue to expand over the coming decades, yet the factors contributing to the effectiveness of long-term restoration across large areas remain largely unexplored. At large scales, outcomes are more complex and synergistic than the additive impacts of individual restoration projects. Here, we propose a cumulative-effects conceptual framework to inform restoration design and implementation and to comprehensively measure ecological outcomes. To evaluate and illustrate this approach, we reviewed long-term restoration in several large coastal and riverine areas across the US: the greater Florida Everglades; Gulf of Mexico coast; lower Columbia River and estuary; Puget Sound; San Francisco Bay and Sacramento–San Joaquin Delta; Missouri River; and northeastern coastal states. Evidence supported eight modes of cumulative effects of interacting restoration projects, which improved outcomes for species and ecosystems at landscape and regional scales. We conclude that cumulative effects, usually measured for ecosystem degradation, are also measurable for ecosystem restoration. The consideration of evidence-based cumulative effects will help managers of large-scale restoration capitalize on positive feedback and reduce countervailing effects

    The effects of global climate change on seagrasses

    No full text
    The increasing rate of global climate change seen in this century, and predicted to accelerate into the next, will significantly impact the Earth\u27s oceans. In this review, we examine previously published seagrass research through a lens of global climate change in order to consider the potential effects on the world\u27s seagrasses. A primary effect of increased global temperature on seagrasses will be the alteration of growth rates and other physiological functions of the plants themselves. The distribution of seagrasses will shift as a result of increased temperature stress and changes in the patterns of sexual reproduction. Indirect temperature effects may include plant community changes as a result of increased eutrophication and changes in the frequency and intensity of extreme weather events. The direct effects of sea level rise on the coastal oceans will be to increase water depths, change tidal variation (both mean tide level and tidal prism), alter water movement, and increase seawater intrusion into estuaries and rivers. A major impact of all these changes on seagrasses and tidal freshwater plants will be a redistribution of existing habitats. The intrusion of ocean water into formerly fresh or brackish water areas will directly affect estuarine plant distribution by changing conditions at specific locations, causing some plants to relocate in order to stay within their tolerance zones and allowing others to expand their distribution inland. Distribution changes will result from the effects of salinity change on seed germination, propagule formation, photosynthesis, growth and biomass. Also, some plant communities may decline or be eliminated as a result of increased disease activity under more highly saline conditions. Increased water depth, which reduces the amount of light reaching existing seagrass beds, will directly reduce plant productivity where plants are light limited. Likewise, increases in water motion and tidal circulation will decrease the amount of light reaching the plants by increasing turbidity or by stimulating the growth of epiphytes. Increasing atmospheric carbon dioxide will directly elevate the amount of CO2 in coastal waters. In areas where seagrasses are carbon limited, this may increase primary production, although whether this increase will be sustained with long-term CO2 enrichment is uncertain. The impact of increases in CO2 will vary with species and environmental circumstances, but will likely include species distribution by altering the competition between seagrass species as well as between seagrass and algal populations. The reaction of seagrasses to UV-B radiation may range from inhibition of photosynthetic activity, as seen for terrestrial plants and marine algae, to the increased metabolic cost of producing UV-B blocking compounds within plant tissue. The effects of UV-B radiation will likely be greatest in the tropics and in southern oceans. There is every reason to believe that, as with the predicted terrestrial effects of global climate change, impacts to seagrasses will be great. The changes that will occur in seagrass communities are difficult to predict; our assessment clearly points out the need for research directed toward the impact of global climate change on seagrasses

    Disturbance of eelgrass Zostera marina by commercial mussel Mytilus edulis harvesting in Maine: dragging impacts and habitat recovery

    Get PDF
    We studied the effects of commercial harvest of blue mussels Mytilus edulis on eelgrass Zostera marina L. in Maquoit Bay, Maine, USA, at a hierarchy of scales. We used aerial photography, underwater video, and eelgrass population- and shoot-based measurements to quantify dragging impacts within 4 sites that had been disturbed at different times over an approximate 7 yr interval, and to project eelgrass meadow recovery rates. Dragging had disturbed 10% of the eelgrass cover in Maquoit Bay, with dragged sites ranging from 3.4 to 31.8 ha in size. Dragging removed above- and belowground plant material from the majority of the bottom in the disturbed sites. One year following dragging, eelgrass shoot density, shoot height and total biomass of disturbed sites averaged respectively 2 to 3%, 46 to 61% and \u3c1% that of the reference sites. Substantial differences in eelgrass biomass persisted between disturbed and reference sites up to 7 yr after dragging. Dragging did not affect physical characteristics of the sediment. The pattern and rate of eelgrass bed recovery depended strongly on initial dragging intensity; areas of relatively light dragging with many remnant eelgrass patches (i.e. patches that were missed by the mussel dredge) showed considerable revegetation in 1 yr. However, by developing recovery trajectories from measurements at sites disturbed in different years, we projected that it would require a mean of 10.6 yr for recovery of eelgrass shoot density within the areas of intense dragging characterizing most of the disturbed sites. A spatial simulation model based on measured rates of lateral patch-expansion (mean 12.5 cm yr–1) and new-patch recruitment (mean 0.19 patches m–2 yr–1) yielded a mean bed recovery time of 9 to 11 yr following dragging, depending on initial degree of plant removal. Model simulations suggested that with favorable environmental conditions, eelgrass beds might recover from dragging disturbance in 6 yr; conversely, recovery under conditions less conducive to eelgrass growth could require 20 yr or longer. This study shows that mussel dragging poses a severe threat to eelgrass in this region and that regulations to protect eelgrass from dragging impacts would maintain the integrity of a substantial amount of habitat

    A Monitoring Protocol to Assess Tidal Restoration of Salt Marshes on Local and Regional Scales

    No full text
    Assessing the response of salt marshes to tidal restoration relies on comparisons of ecosystem attributes between restored and reference marshes. Although this approach provides an objective basis for judging project success, inferences can be constrained if the high variability of natural marshes masks differences in sampled attributes between restored and reference sites. Furthermore, such assessments are usually focused on a small number of restoration projects in a local area, limiting the ability to address questions regarding the effectiveness of restoration within a broad region. We developed a hierarchical approach to evaluate the performance of tidal restorations at local and regional scales throughout the Gulf of Maine. The cornerstone of the approach is a standard protocol for monitoring restored and reference salt marshes throughout the region. The monitoring protocol was developed by consensus among nearly 50 restoration scientists and practitioners. The protocol is based on a suite of core structural measures that can be applied to any tidal restoration project. The protocol also includes additional functional measures for application to specific projects. Consistent use of the standard protocol to monitor local projects will enable pooling information for regional assessments. Ultimately, it will be possible to establish a range of reference conditions characterizing natural tidal wetlands in the region and to compare performance curves between populations of restored and reference marshes for assessing regional restoration effectiveness

    A monitoring protocol to assess tidal restoration of salt marshes on local and regional scales

    No full text
    Assessing the response of salt marshes to tidal restoration relies on comparisons of ecosystem attributes between restored and reference marshes. Although this approach provides an objective basis for judging project success, inferences can be constrained if the high variability of natural marshes masks differences in sampled attributes between restored and references sites. Furthermore, such assessments are usually focused on a small number of restoration projects in a local area, limiting the ability to address questions regarding the effectiveness of restoration within a broad region. We developed a hierarchical approach to evaluate the performance of tidal restorations at local and regional scales throughout the Gulf of Maine. The cornerstone of the approach is a standard protocol for monitoring restored and reference salt marshes throughout the region. The monitoring protocol was developed by consensus among nearly 50 restoration scientists and practitioners. The protocol is based on a suite of core structural measures that can be applied to any tidal restoration project. The protocol also includes additional functional measures for application to specific projects. Consistent use of the standard protocol to monitor local projects will enable pooling information for regional assessments. Ultimately, it will be possible to establish a range of reference conditions characterizing natural tidal wetlands in the region and to compare performance curves between populations of restored and reference marshes for assessing regional restoration effectiveness

    Biogeographical patterns of tunicates utilizing eelgrass as substrate in the western North Atlantic between 39 degrees and 47 degrees north latitude (New Jersey to Newfoundland)

    No full text
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carmen, M. R., Colarusso, P. D., Neckles, H. A., Bologna, P., Caines, S., Davidson, J. D. P., Evans, N. T., Fox, S. E., Grunden, D. W., Hoffman, S., Ma, K. C. K., Matheson, K., McKenzie, C. H., Nelson, E. P., Plaisted, H., Reddington, E., Schott, S., & Wong, M. C. Biogeographical patterns of tunicates utilizing eelgrass as substrate in the western North Atlantic between 39 degrees and 47 degrees north latitude (New Jersey to Newfoundland). Management of Biological Invasions, 10(4), (2019): 602-616, doi: 10.3391/mbi.2019.10.4.02.Colonization of eelgrass (Zostera marina L.) by tunicates can lead to reduced plant growth and survival. Several of the tunicate species that are found on eelgrass in the northwest Atlantic are highly aggressive colonizers, and range expansions are predicted in association with climate-change induced increases in seawater temperature. In 2017, we surveyed tunicates within eelgrass meadows at 33 sites from New Jersey to Newfoundland. Eight tunicate species were identified colonizing eelgrass, of which four were non-native and one was cryptogenic. The most common species (Botrylloides violaceus and Botryllus schlosseri) occurred from New York to Atlantic Canada. Tunicate faunas attached to eelgrass were less diverse north of Cape Cod, Massachusetts. Artificial substrates in the vicinity of the eelgrass meadows generally supported more tunicate species than did the eelgrass, but fewer species co-occurred in northern sites than southern sites. The latitudinal gradient in tunicate diversity corresponded to gradients of summertime sea surface temperature and traditional biogeographical zones in the northwest Atlantic, where Cape Cod represents a transition between cold-water and warm-water invertebrate faunas. Tunicate density in the eelgrass meadows was low, ranging generally from 1–25% cover of eelgrass shoots, suggesting that space availability does not currently limit tunicate colonization of eelgrass. This survey, along with our 2013 survey, provide a baseline for identifying future changes in tunicate distribution and abundance in northwest Atlantic eelgrass meadows.We thank Benedikte Vercaemer, Dann Blackwood, Jonathon Seaward, Dani Cleary, Sam Hartman, Kim Manzo, and Jason Havelin for field assistance. Thank you too to Alicia Grimaldi for map construction and Page Valentine for constructively reviewing the manuscript. Thank you to the Community Preservation Committee of Oak Bluffs, Massachusetts, and the USGS-WHOI Cooperative Agreement for funding (Carman). All data used in this paper are publicly available through USGS ScienceBase at https://doi.org/10.5066/P9GDBDFQ. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government
    corecore