55 research outputs found

    A clinical evaluation of an ex vivo organ culture system to predict patient response to cancer therapy

    Get PDF
    IntroductionEx vivo organ cultures (EVOC) were recently optimized to sustain cancer tissue for 5 days with its complete microenvironment. We examined the ability of an EVOC platform to predict patient response to cancer therapy.MethodsA multicenter, prospective, single-arm observational trial. Samples were obtained from patients with newly diagnosed bladder cancer who underwent transurethral resection of bladder tumor and from core needle biopsies of patients with metastatic cancer. The tumors were cut into 250 μM slices and cultured within 24 h, then incubated for 96 h with vehicle or intended to treat drug. The cultures were then fixed and stained to analyze their morphology and cell viability. Each EVOC was given a score based on cell viability, level of damage, and Ki67 proliferation, and the scores were correlated with the patients’ clinical response assessed by pathology or Response Evaluation Criteria in Solid Tumors (RECIST).ResultsThe cancer tissue and microenvironment, including endothelial and immune cells, were preserved at high viability with continued cell division for 5 days, demonstrating active cell signaling dynamics. A total of 34 cancer samples were tested by the platform and were correlated with clinical results. A higher EVOC score was correlated with better clinical response. The EVOC system showed a predictive specificity of 77.7% (7/9, 95% CI 0.4–0.97) and a sensitivity of 96% (24/25, 95% CI 0.80–0.99).ConclusionEVOC cultured for 5 days showed high sensitivity and specificity for predicting clinical response to therapy among patients with muscle-invasive bladder cancer and other solid tumors

    A simplified interventional mapping system (SIMS) for the selection of combinations of targeted treatments in non-small cell lung cancer

    Get PDF
    Non-small cell lung cancer (NSCLC) is a leading cause of death worldwide. Targeted monotherapies produce high regression rates, albeit for limited patient subgroups, who inevitably succumb. We present a novel strategy for identifying customized combinations of triplets of targeted agents, utilizing a simplified interventional mapping system (SIMS) that merges knowledge about existent drugs and their impact on the hallmarks of cancer. Based on interrogation of matched lung tumor and normal tissue using targeted genomic sequencing, copy number variation, transcriptomics, and miRNA expression, the activation status of 24 interventional nodes was elucidated. An algorithm was developed to create a scoring system that enables ranking of the activated interventional nodes for each patient. Based on the trends of co-activation at interventional points, combinations of drug triplets were defined in order to overcome resistance. This methodology will inform a prospective trial to be conducted by the WIN consortium, aiming to significantly impact survival in metastatic NSCLC and other malignancies

    Interleukin-4 distinctively modifies responses of germinal centre-like and activated B-cell-like diffuse large B-cell lymphomas to immuno-chemotherapy

    No full text
    Diffuse large B-cell lymphomas (DLBCLs) can be classified into two subtypes: germinal-centre B-cell (GCB)-like and Activated B-cell (ABC)-like tumours, which are associated with longer or shorter patient overall survival, respectively. In our previous studies, we have shown that, although DLBCL tumours of GCB-like and ABC-like subtypes express similar levels of IL4 mRNA, they exhibit distinct patterns of IL-4-induced intracellular signalling and different expression of IL-4 target genes. We hypothesized that these differences may contribute to the different clinical behaviour and outcome of DLBCL subtypes. Herein, we demonstrated that IL-4 increased the sensitivity of GCB-like DLBCL to doxorubicin-induced apoptosis and complement-dependent rituximab cell killing. In contrast, IL-4 protected ABC-like DLBCL from the cytotoxic effects of doxorubicin and rituximab. The distinct effects of IL-4 on doxorubicin sensitivity in GCB-like and ABC-like DLBCL cells may be partially attributed to the contrasting effects of the cytokine on Bcl-2 and Bad protein levels in the DLBCL subtypes. These findings suggest that the different effects of IL-4 on chemotherapy and immunotherapy-induced cytotoxicity of GCB- and ABC-like DLBCL could contribute to the different clinical outcomes exhibited by patients with these two subtypes of DLBCL

    Microphthalmia Transcription Factor Isoforms in Mast Cells and the Heartâ–ż

    No full text
    The microphthalmia transcription factor (Mitf) is critical for the survival and differentiation of a variety of cell types. While on the transcript level it has been noted that melanocytes and cardiomyocytes express specific Mitf isoforms, mast cells express several isoforms, mainly Mitf-H and Mitf-MC, whose function has not been thoroughly investigated. We found that in mast cells the expression of the specific Mitf isoforms is dependent on physiological stimuli that cause a major shifting of promoter usage and internal splicing. For example, activation of the c-kit signaling pathway almost totally abolished one of the main splice isoforms. Since cardiomyocytes express only the Mitf-H isoform, they were an ideal system to determine this isoform's physiological role. We identified that the expression of myosin light-chain 1a (MLC-1a) is regulated by Mitf-H. Interestingly, the transactivation of MLC-1a by Mitf-H in cardiomyocytes is decreased by overexpression of the splice form with exon 6a. In conclusion, we found that there is physiological switching of Mitf isoforms and that the promoter context and the cell context have a combined influence on gene expression programs
    • …
    corecore