22 research outputs found

    Comparison of approaches for rational siRNA design leading to a new efficient and transparent method

    Get PDF
    Current literature describes several methods for the design of efficient siRNAs with 19 perfectly matched base pairs and 2ā€‰nt overhangs. Using four independent databases totaling 3336 experimentally verified siRNAs, we compared how well several of these methods predict siRNA cleavage efficiency. According to receiver operating characteristics (ROC) and correlation analyses, the best programs were BioPredsi, ThermoComposition and DSIR. We also studied individual parameters that significantly and consistently correlated with siRNA efficacy in different databases. As a result of this work we developed a new method which utilizes linear regression fitting with local duplex stability, nucleotide position-dependent preferences and total G/C content of siRNA duplexes as input parameters. The new method's discrimination ability of efficient and inefficient siRNAs is comparable with that of the best methods identified, but its parameters are more obviously related to the mechanisms of siRNA action in comparison with BioPredsi. This permits insight to the underlying physical features and relative importance of the parameters. The new method of predicting siRNA efficiency is faster than that of ThermoComposition because it does not employ time-consuming RNA secondary structure calculations and has much less parameters than DSIR. It is available as a web tool called ā€˜siRNA scalesā€™

    A method for identification of the methylation level of CpG islands from NGS data

    Get PDF
    In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data

    The Use of the Statistical Entropy in Some New Approaches for the Description of Biosystems

    No full text
    Some problems of describing biological systems with the use of entropy as a measure of the complexity of these systems are considered. Entropy is studied both for the organism as a whole and for its parts down to the molecular level. Correlation of actions of various parts of the whole organism, intercellular interactions and control, as well as cooperativity on the microlevel lead to a more complex structure and lower statistical entropy. For a multicellular organism, entropy is much lower than entropy for the same mass of a colony of unicellular organisms. Cooperativity always reduces the entropy of the system; a simple example of ligand binding to a macromolecule carrying two reaction centers shows how entropy is consistent with the ambiguity of the result in the Bernoulli test scheme. Particular attention is paid to the qualitative and quantitative relationship between the entropy of the system and the cooperativity of ligand binding to macromolecules. A kinetic model of metabolism. corresponding to Schrödinger’s concept of the maintenance biosystems by “negentropy feeding”, is proposed. This model allows calculating the nonequilibrium local entropy and comparing it with the local equilibrium entropy inherent in non-living matter

    Additional file 4: of Structural features of DNA that determine RNA polymerase II core promoter

    No full text
    a show frequencies of tetranucleotide occurrences (in percentages) in terms of ā€œPy,Puā€ in H. sapiens and M. musculus. b show frequencies of tetranucleotide occurrences (in percentages) in terms of ā€œPy,Puā€ in D. melanogaster and C. elegans. c show frequencies of tetranucleotide occurrences (in percentages) in terms of ā€œPy,Puā€ in D. rerio and A. thaliana. d show frequencies of tetranucleotide occurrences (in percentages) in terms of ā€œPy,Puā€ in S. cerevisiae. e show frequencies of tetranucleotide occurrences (in percentages) in terms of ā€œPy,Puā€ in S. pombe. (PDF 6997 kb

    SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry

    No full text
    Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either

    Additional file 10: of Structural features of DNA that determine RNA polymerase II core promoter

    No full text
    (A-H) show the ultrasonic and DNase I cleavage profiles for both complementary strands in the core promoters of D. rerio. (PDF 284 kb
    corecore