17 research outputs found

    Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma

    No full text
    In a systematic search for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) target genes, we identified S3-12 and perilipin as novel direct PPAR-gamma target genes. Together with adipophilin and tail-interacting protein of 47 kDa, these genes are lipid droplet-associating proteins with distinct expression pattern but overlapping expression in adipose tissue. The expression of S3-12 and perilipin is tightly correlated to the expression and activation of PPAR-gamma in adipocytes, and promoter characterization revealed that the S3-12 and the perilipin promoters contain three and one evolutionarily conserved PPAR response elements, respectively. We furthermore demonstrate that the expression of S3-12 and perilipin is reduced in obese compared with lean Zucker rats, whereas the expression of adipophilin is increased. Others have shown that perilipin is an essential factor in the hormonal regulation of lipolysis of stored triglycerides within adipose tissue. The direct regulation of perilipin and S3-12 by PPAR-gamma therefore is likely to be an important mediator of the in vivo effects of prolonged treatment with PPAR-gamma activators: insulin sensitization, fatty acid trapping in adipose tissue, reduced basal adipose lipolysis, and weight gain

    Molecular modelling, synthesis, and biological evaluations of a 3,5-disubstituted isoxazole fatty acid analogue as a PPARα-selective agonist

    Get PDF
    The peroxisome proliferator activated receptors (PPARs) are important drug targets in treatment of metabolic and inflammatory disorders. Fibrates, acting as PPARα agonists, have been widely used lipid-lowering agents for decades. However, the currently available PPARα targeting agents show low subtype-specificity and consequently a search for more potent agonists have emerged. In this study, previously isolated oxohexadecenoic acids from the marine algae Chaetoceros karianus were used to design a PPARα-specific analogue. Herein we report the design, synthesis, molecular modelling studies and biological evaluations of the novel 3,5-disubstituted isoxazole analogue 6-(5-heptyl-1,2-oxazol-3-yl)hexanoic acid (1), named ADAM. ADAM shows a clear receptor preference and significant dose-dependent activation of PPARα (EC50 = 47 µM) through its ligand-binding domain (LBD). Moreover, ADAM induces expression of important PPARα target genes, such as CPT1A, in the Huh7 cell line and primary mouse hepatocytes. In addition, ADAM exhibits a moderate ability to regulate PPARγ target genes and drive adipogenesis. Molecular modelling studies indicated that ADAM docks its carboxyl group into opposite ends of the PPARα and -γ LBD. ADAM interacts with the receptor-activating polar network of amino acids (Tyr501, His447 and Ser317) in PPARα, but not in PPARγ LBD. This may explain the lack of PPARγ agonism, and argues for a PPARα-dependent adipogenic function. Such compounds are of interest towards developing new lipid-lowering remedies
    corecore