48 research outputs found

    Thalamic nuclei in frontotemporal dementia: Mediodorsal nucleus involvement is universal but pulvinar atrophy is unique to C9orf72

    Get PDF
    Thalamic atrophy is a common feature across all forms of FTD but little is known about specific nuclei involvement. We aimed to investigate in vivo atrophy of the thalamic nuclei across the FTD spectrum. A cohort of 402 FTD patients (age: mean(SD) 64.3(8.2) years; disease duration: 4.8(2.8) years) was compared with 104 age‐matched controls (age: 62.5(10.4) years), using an automated segmentation of T1‐weighted MRIs to extract volumes of 14 thalamic nuclei. Stratification was performed by clinical diagnosis (180 behavioural variant FTD (bvFTD), 85 semantic variant primary progressive aphasia (svPPA), 114 nonfluent variant PPA (nfvPPA), 15 PPA not otherwise specified (PPA‐NOS), and 8 with associated motor neurone disease (FTD‐MND), genetic diagnosis (27 MAPT, 28 C9orf72, 18 GRN), and pathological confirmation (37 tauopathy, 38 TDP‐43opathy, 4 FUSopathy). The mediodorsal nucleus (MD) was the only nucleus affected in all FTD subgroups (16–33% smaller than controls). The laterodorsal nucleus was also particularly affected in genetic cases (28–38%), TDP‐43 type A (47%), tau‐CBD (44%), and FTD‐MND (53%). The pulvinar was affected only in the C9orf72 group (16%). Both the lateral and medial geniculate nuclei were also affected in the genetic cases (10–20%), particularly the LGN in C9orf72 expansion carriers. Use of individual thalamic nuclei volumes provided higher accuracy in discriminating between FTD groups than the whole thalamic volume. The MD is the only structure affected across all FTD groups. Differential involvement of the thalamic nuclei among FTD forms is seen, with a unique pattern of atrophy in the pulvinar in C9orf72 expansion carriers

    A case of TDP-43 type C pathology presenting as nonfluent variant primary progressive aphasia

    Get PDF
    We report a case of rapidly progressive nonfluent variant PPA (nfvPPA), age at onset 77 years old and disease duration 3.3 years, who came to post mortem and was found to have TDP-43 type C pathology, an unusual finding for nfvPPA. All prior TDP-43 type C cases from the UCL FTD cohort (n=25) had a semantic variant PPA (svPPA) phenotype, with all having a younger age at onset and longer disease duration than the nfvPPA case. Volumetric analysis of MRI from the nfvPPA case, twelve of the svPPA cases and ten age-matched controls was performed. Whilst left frontal and insular volumes were lower in the nfvPPA case compared with svPPA, cortical and medial temporal lobe volumes were lower (particularly on the right) in the svPPA group compared with the nfvPPA patient. Such anatomical involvement is likely to be consistent with the presence of a nonfluent aphasia (left frontal lobe and insula), and only mild semantic deficit early in the illness (left but not right temporal lobe). Such unique cases add to the heterogeneity of the FTD spectrum

    Basal forebrain atrophy in frontotemporal dementia

    Get PDF
    Background: The basal forebrain is a subcortical structure that plays an important role in learning, attention, and memory. Despite the known subcortical involvement in frontotemporal dementia (FTD), there is little research into the role of the basal forebrain in this disease. We aimed to investigate differences in basal forebrain volumes between clinical, genetic, and pathological diagnoses of FTD. / Methods: 356 patients with FTD were recruited from the UCL Dementia Research Centre and matched on age and gender with 83 cognitively normal controls. All subjects had a T1-weighted MR scan suitable for analysis. Basal forebrain volumes were calculated using the Geodesic Information Flow (GIF) parcellation method and were compared between clinical (148 bvFTD, 82 svPPA, 103 nfvPPA, 14 PPA-NOS, 9 FTD-MND), genetic (24 MAPT, 15 GRN, 26 C9orf72) and pathological groups (28 tau, 3 FUS, 35 TDP-43) and controls. A subanalysis was also performed comparing pathological subgroups of tau (11 Pick's disease, 6 FTDP-17, 7 CBD, 4 PSP) and TDP-43 (12 type A, 2 type B, 21 type C). / Results: All clinical subtypes of FTD showed significantly smaller volumes than controls (p≀ 0.010, ANCOVA), with svPPA (10% volumetric difference) and bvFTD (9%) displaying the smallest volumes. Reduced basal forebrain volumes were also seen in MAPT mutations (18%, p<0.0005) and in individuals with pathologically confirmed FTDP-17 (17%), Pick's disease (12%), and TDP-43 type C (8%) (p<0.001). / Conclusion: Involvement of the basal forebrain is a common feature in FTD, although the extent of volume reduction differs between clinical, genetic, and pathological diagnoses. Tauopathies, particularly those with MAPT mutations, had the smallest volumes. However, atrophy was also seen in those with TDP-43 type C pathology (most of whom have svPPA clinically). This suggests that the basal forebrain is vulnerable to multiple types of FTD-associated protein inclusions

    Automated Brainstem Segmentation Detects Differential Involvement in Atypical Parkinsonian Syndromes

    Get PDF
    OBJECTIVE: Brainstem segmentation has been useful in identifying potential imaging biomarkers for diagnosis and progression in atypical parkinsonian syndromes (APS). However, the majority of work has been performed using manual segmentation, which is time consuming for large cohorts. METHODS: We investigated brainstem involvement in APS using an automated method. We measured the volume of the medulla, pons, superior cerebellar peduncle (SCP) and midbrain from T1-weighted MRIs in 67 patients and 42 controls. Diagnoses were corticobasal syndrome (CBS, n = 14), multiple system atrophy (MSA, n = 16: 8 with parkinsonian syndrome, MSA-P; 8 with cerebellar syndrome, MSA-C), progressive supranuclear palsy with a Richardson’s syndrome (PSP-RS, n = 12), variant PSP (n = 18), and APS not otherwise specified (APS-NOS, n = 7). RESULTS: All brainstem regions were smaller in MSA-C (19–42% volume difference, p < 0.0005) and in both PSP groups (18–33%, p < 0.0005) than in controls. MSA-P showed lower volumes in all regions except the SCP (15–26%, p < 0.0005). The most affected region in MSA-C and MSA-P was the pons (42% and 26%, respectively), while the most affected regions in both the PSP-RS and variant PSP groups were the SCP (33% and 23%, respectively) and midbrain (26% and 24%, respectively). The brainstem was less affected in CBS, but nonetheless, the pons (14%, p < 0.0005), midbrain (14%, p < 0.0005) and medulla (10%, p = 0.001) were significantly smaller in CBS than in controls. The brainstem was unaffected in APS-NOS. CONCLUSION: Automated methods can accurately quantify the involvement of brainstem structures in APS. This will be important in future trials with large patient numbers where manual segmentation is unfeasible

    Thalamohippocampal atrophy in focal epilepsy of unknown cause at the time of diagnosis.

    Get PDF
    BACKGROUND AND PURPOSE:Patients with chronic focal epilepsy may have atrophy of brain structures important for the generation and maintenance of seizures. However, little research has been conducted in patients with newly diagnosed focal epilepsy (NDfE), despite it being a crucial point in time for understanding the underlying biology of the disorder. We aimed to determine whether patients with NDfE show evidence of volumetric abnormalities of subcortical structures. METHODS:Eighty-two patients with NDfE and 40 healthy controls underwent magnetic resonance imaging scanning using a standard clinical protocol. Volume estimation of the left and right hippocampus, thalamus, caudate nucleus, putamen and cerebral hemisphere was performed for all participants and normalised to whole brain volume. Volumes lower than two standard deviations below the control mean were considered abnormal. Volumes were analysed with respect to patient clinical characteristics, including treatment outcome 12 months after diagnosis. RESULTS:Volume of the left hippocampus (p(FDR-corr)  = 0.04) and left (p(FDR-corr)  = 0.002) and right (p(FDR-corr)  = 0.04) thalamus was significantly smaller in patients relative to controls. Relative to the normal volume limits in controls, 11% patients had left hippocampal atrophy, 17% had left thalamic atrophy and 9% had right thalamic atrophy. We did not find evidence of a relationship between volumes and future seizure control or with other clinical characteristics of epilepsy. CONCLUSIONS:Volumetric abnormalities of structures known to be important for the generation and maintenance of focal seizures are established at the time of epilepsy diagnosis and are not necessarily a result of the chronicity of the disorder

    Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia

    Get PDF
    BACKGROUND: There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. METHODS: Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. RESULTS: Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. CONCLUSIONS: Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials

    White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study

    Get PDF
    Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN mutations rather than other forms of FTD. The aim of the current study was to investigate the longitudinal change in WMH and the associations of WMH burden with grey matter (GM) loss, markers of neurodegeneration and cognitive function in GRN mutation carriers. 336 participants in the Genetic FTD Initiative (GENFI) study were included in the analysis: 101 presymptomatic and 32 symptomatic GRN mutation carriers, as well as 203 mutation-negative controls. 39 presymptomatic and 12 symptomatic carriers, and 73 controls also had longitudinal data available. Participants underwent MR imaging acquisition including isotropic 1 mm T1-weighted and T2-weighted sequences. WMH were automatically segmented and locally subdivided to enable a more detailed representation of the pathology distribution. Log-transformed WMH volumes were investigated in terms of their global and regional associations with imaging measures (grey matter volumes), biomarker concentrations (plasma neurofilament light chain, NfL, and glial fibrillary acidic protein, GFAP), genetic status (TMEM106B risk genotype) and cognition (tests of executive function). Analyses revealed that WMH load was higher in both symptomatic and presymptomatic groups compared with controls and this load increased over time. In particular, lesions were seen periventricularly in frontal and occipital lobes, progressing to medial layers over time. However, there was variability in the WMH load across GRN mutation carriers - in the symptomatic group 25.0% had none/mild load, 37.5% had medium and 37.5% had a severe load - a difference not fully explained by disease duration. GM atrophy was strongly associated with WMH load both globally and in separate lobes, and increased WMH burden in the frontal, periventricular and medial regions was associated with worse executive function. Furthermore, plasma NfL and to a lesser extent GFAP concentrations were seen to be associated with increased lesion burden. Lastly, the presence of the homozygous TMEM106B rs1990622 TT risk genotypic status was associated with an increased accrual of WMH per year. In summary, WMH occur in GRN mutation carriers and accumulate over time, but are variable in their severity. They are associated with increased GM atrophy and executive dysfunction. Furthermore, their presence is associated with markers of WM damage (NfL) and astrocytosis (GFAP), whilst their accrual is modified by TMEM106B genetic status. WMH load may represent a target marker for trials of disease modifying therapies in individual patients but the variability across the GRN population would prevent use of such markers as a global outcome measure across all participants in a trial

    White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study

    Get PDF
    Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN mutations rather than other forms of FTD. The aim of the current study was to investigate the longitudinal change in WMH and the associations of WMH burden with grey matter (GM) loss, markers of neurodegeneration and cognitive function in GRN mutation carriers. 336 participants in the Genetic FTD Initiative (GENFI) study were included in the analysis: 101 presymptomatic and 32 symptomatic GRN mutation carriers, as well as 203 mutation-negative controls. 39 presymptomatic and 12 symptomatic carriers, and 73 controls also had longitudinal data available. Participants underwent MR imaging acquisition including isotropic 1 mm T1-weighted and T2-weighted sequences. WMH were automatically segmented and locally subdivided to enable a more detailed representation of the pathology distribution. Log-transformed WMH volumes were investigated in terms of their global and regional associations with imaging measures (grey matter volumes), biomarker concentrations (plasma neurofilament light chain, NfL, and glial fibrillary acidic protein, GFAP), genetic status (TMEM106B risk genotype) and cognition (tests of executive function). Analyses revealed that WMH load was higher in both symptomatic and presymptomatic groups compared with controls and this load increased over time. In particular, lesions were seen periventricularly in frontal and occipital lobes, progressing to medial layers over time. However, there was variability in the WMH load across GRN mutation carriers - in the symptomatic group 25.0% had none/mild load, 37.5% had medium and 37.5% had a severe load - a difference not fully explained by disease duration. GM atrophy was strongly associated with WMH load both globally and in separate lobes, and increased WMH burden in the frontal, periventricular and medial regions was associated with worse executive function. Furthermore, plasma NfL and to a lesser extent GFAP concentrations were seen to be associated with increased lesion burden. Lastly, the presence of the homozygous TMEM106B rs1990622 TT risk genotypic status was associated with an increased accrual of WMH per year. In summary, WMH occur in GRN mutation carriers and accumulate over time, but are variable in their severity. They are associated with increased GM atrophy and executive dysfunction. Furthermore, their presence is associated with markers of WM damage (NfL) and astrocytosis (GFAP), whilst their accrual is modified by TMEM106B genetic status. WMH load may represent a target marker for trials of disease modifying therapies in individual patients but the variability across the GRN population would prevent use of such markers as a global outcome measure across all participants in a trial

    Neuronal pentraxin 2 : a synapse-derived CSF biomarker in genetic frontotemporal dementia

    Get PDF
    Introduction: Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD. Methods: We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses. Results: Symptomatic mutation carriers had lower NPTX2 concentrations (median 643 pg/mL, IQR (301-872)) than presymptomatic carriers (1003 pg/mL (624-1358), p&lt;0.001) and non-carriers (990 pg/mL (597-1373), p&lt;0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage. Discussion: We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD
    corecore