81 research outputs found

    Age-related changes in arterial blood-gas variables in Holstein calves at moderate altitude

    Get PDF
    Includes bibliographical references (pages 19-20).The goal of this study was to determine whether peripheral oxygen delivery and efficacy of alveolar-arterial oxygen (A-a O2) transfer, as estimated from the A-a O2 pressure gradient, are compromised in Holstein calves at moderate altitude. The primary objective was to evaluate age-related changes in arterial blood-gas variables, L-lactate, and hematocrit in healthy calves. The secondary objective was to determine if coughing and nasal discharge, commonly used indicators of respiratory disease, are associated with A-a O2 gradient. Arterial blood-gas tensions were evaluated in a cohort of 61 dairy calves on one farm at moderate altitude (1,601 m to 1,696 m). Sampling was performed on four occasions at approximately 10, 38, 150, and 261 days of age. Hyperventilation, as indicated by hypocapnia, was evident in calves of all ages. Increasing age was associated with a nonlinear increase in arterial oxygen tension (P<0.001) and a nonlinear decrease in A-a O2 gradient (P<0.001). The mean A-a O2 gradient at 10 and 38 days of age was over 18 mmHg, indicating poor efficacy of oxygen transfer. Cough score (P=0.02) but not nasal score (P=0.32) was associated with an in increase in A-a O2 pressure gradient. Mean hematocrit remained low (<27%) despite hypoxemia. From 38 days of age, median L-lactate concentration remained over 1.5 mmol/L, indicating substantial anaerobic respiration due to inadequate oxygen delivery. Twenty-five percent of calves were treated for respiratory disease. The maximum age at first treatment was 102 days. In conclusion, there was a nonlinear improvement in A-a O2 transfer efficacy with increasing age, but peripheral oxygen delivery remained compromised. Hyperventilation and impaired A-a O2 transfer due to functional immaturity of the pulmonary system may be risk factors for respiratory disease in dairy calves at moderate altitude.Published with support from the Colorado State University Libraries Open Access Research and Scholarship Fund

    ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells

    Get PDF
    ATP is well known for its role as an intracellular energy source. However, there is increasing awareness of its role as an extracellular messenger molecule (Burnstock, 1997). Although evidence for the presence of receptors for extracellular ATP on skeletal myoblasts was first published in 1983 (Kolb and Wakelam), their physiological function has remained unclear. In this paper we used primary cultures of rat skeletal muscle satellite cells to investigate the role of purinergic signaling in muscle formation. Using immunocytochemistry, RT-PCR, and electrophysiology, we demonstrate that the ionotropic P2X5 receptor is present on satellite cells and that activation of a P2X receptor inhibits proliferation, stimulates expression of markers of muscle cell differentiation, including myogenin, p21, and myosin heavy chain, and increases the rate of myotube formation. Furthermore, we demonstrate that ATP application results in a significant and rapid increase in the phosphorylation of MAPKs, particularly p38, and that inhibition of p38 activity can prevent the effect of ATP on cell number. These results not only demonstrate the existence of a novel regulator of skeletal muscle differentiation, namely ATP, but also a new role for ionotropic P2X receptors in the control of cell fate

    Pulmonary arterial pressures, arterial blood-gas tensions, and serum biochemistry of beef calves born and raised at high altitude

    Get PDF
    Includes bibliographical references (page 8).High-altitude exposure is physiologically challenging. This is particularly true for animals native to low-altitude environments, such as British breeds of cattle. The objective of this study was to document the effect of high altitude on select physiological parameters of healthy beef calves (Bos taurus) born and raised on a high-altitude ranch typical of the Rocky Mountain region. Pulmonary arterial pressures, arterial blood-gas tensions, serum biochemistry, and hematocrit were evaluated. The calves studied were a composite of British (50%-75%) and Continental (25-50%) breeds born on one ranch at an altitude of 2410 m. Calves were sampled at an altitude of 2410 m when 1 month old and again at an altitude of 2730 m when 3 and 6 months old. Between 3 and 6 months of age, calves had access to grazing from 2730 m to approximately 3500 m above sea level. On each occasion, 16 to 50 calves were sampled. Only calves that remained healthy throughout all three testing periods were included in the dataset. Calves with the highest pulmonary arterial pressures at 1 month of age tended to have the highest pressures at 6 months of age (r = 0.43, P = 0.16, n = 12). Respiratory alkalosis was greatest at 6 months of age (pH 7.48 ± 0.06). Mean alveolar-arterial oxygen pressure gradients were 11.7and 11.6 mmHg at 3 and 6 months of age, indicating poor transfer of oxygen from the alveoli into the pulmonary blood. Median values for blood lactate ranged from 1.4 to 3.4 mmol/L indicating substantial anaerobic respiration at all ages. Mean hematocrits were ≀ 35.7%, only slightly higher than values obtained from age-matched calves at sea level. These results suggest that the provision of oxygen to the peripheral tissues of beef calves may be compromised at altitudes over 2410 m. This may have implications for diseases of the cardiopulmonary system.Published with support from the Colorado State University Libraries Open Access Research and Scholarship Fund

    Automated dairy cattle lameness detection utilizing the power of artificial intelligence; current status quo and future research opportunities.

    Get PDF
    Lameness represents a major welfare and health problem for the dairy industry across all farming systems. Visual mobility scoring, although very useful, is labour-intensive and physically demanding, especially in large dairies, often leading to inconsistencies and inadequate uptake of the practice. Technological and computational advancements of artificial intelligence (AI) have led to the development of numerous automated solutions for livestock monitoring. The objective of this study was to review the automated systems using AI algorithms for lameness detection developed to-date. These systems rely on gait analysis using accelerometers, weighing platforms, acoustic analysis, radar sensors and computer vision technology. The lameness features of interest, the AI techniques used to process the data as well as the ground truth of lameness selected in each case are described. Measures of accuracy regarding correct classification of cows as lame or non-lame varied with most systems being able to classify cows with adequate reliability. Most studies used visual mobility scoring as the ground truth for comparison with only a few studies using the presence of specific foot pathologies. Given the capabilities of AI, and the benefits of early treatment of lameness, longitudinal studies to identify gait abnormalities using automated scores related to the early developmental stages of different foot pathologies are required. Farm-specific optimal thresholds for early intervention should then be identified to ameliorate cow health and welfare but also minimise unnecessary inspections

    Kinetics of ATP release following compression injury of a peripheral nerve trunk

    Get PDF
    Compression and/or contusion of a peripheral nerve trunk can result in painful sensations. It is possible that release of ATP into the extracellular space may contribute to this symptom. In the present study, we used real-time measurements of ATP-induced bioluminescence together with electrophysiological recordings of compound action potentials to follow changes in the extracellular ATP concentration of isolated rat spinal roots exposed to mechanical stimuli. Nerve compression for about 8 s resulted in an immediate release of ATP into the extracellular space and in a decrease in the amplitude of compound action potentials. On average, a rise in ATP to 60 nM was observed when nerve compression blocked 50% of the myelinated axons. After the compression, the extracellular concentration of ATP returned to the resting level within a few minutes. The importance of ecto-nucleotidases for the recovery period was determined by exposure of isolated spinal roots to high concentrations of ATP and by use of inhibitors of ecto-nucleotidases. It was observed that spinal roots have a high capacity for ATP hydrolysis which is only partially blocked by ÎČÎł-methylene ATP and ARL 67156. In conclusion, acute nerve compression produces an increase in the extracellular concentration of ATP and of its metabolites which may be sufficient for activation of purinergic P2 and/or P1 receptors on axons of nociceptive afferent neurons

    Student engagement with LinkedIn to enhance employability

    Get PDF
    Social networking sites are an increasingly important tool for career development: LinkedIn particularly, is a site for business professionals, focusing on business connections and industry contacts for employers and professionals. Often however students do not engage with LinkedIn as they consider it too ‘profession focussed.’ There is a lack of awareness also about how they can use the platform to enhance their employability. Whilst recognising previous works on social media for teaching and learning in HE, this chapter examines the challenges facing students in respect of engaging with LinkedIn for career progression. It identifies the efforts that students make in building and maintaining networks, in becoming part of professional networks, via willing engagement. This chapter contributes to knowledge about LinkedIn, from a professional development point of view, offering suggestions to help students and tutors make the best use of LinkedIn, to improve both student engagement and subsequent employability (3882)

    Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech

    Get PDF
    Apraxia of speech is a disorder of speech motor planning and/or programming that is distinguishable from aphasia and dysarthria. It most commonly results from vascular insults but can occur in degenerative diseases where it has typically been subsumed under aphasia, or it occurs in the context of more widespread neurodegeneration. The aim of this study was to determine whether apraxia of speech can present as an isolated sign of neurodegenerative disease. Between July 2010 and July 2011, 37 subjects with a neurodegenerative speech and language disorder were prospectively recruited and underwent detailed speech and language, neurological, neuropsychological and neuroimaging testing. The neuroimaging battery included 3.0 tesla volumetric head magnetic resonance imaging, [18F]-fluorodeoxyglucose and [11C] Pittsburg compound B positron emission tomography scanning. Twelve subjects were identified as having apraxia of speech without any signs of aphasia based on a comprehensive battery of language tests; hence, none met criteria for primary progressive aphasia. These subjects with primary progressive apraxia of speech included eight females and four males, with a mean age of onset of 73 years (range: 49–82). There were no specific additional shared patterns of neurological or neuropsychological impairment in the subjects with primary progressive apraxia of speech, but there was individual variability. Some subjects, for example, had mild features of behavioural change, executive dysfunction, limb apraxia or Parkinsonism. Voxel-based morphometry of grey matter revealed focal atrophy of superior lateral premotor cortex and supplementary motor area. Voxel-based morphometry of white matter showed volume loss in these same regions but with extension of loss involving the inferior premotor cortex and body of the corpus callosum. These same areas of white matter loss were observed with diffusion tensor imaging analysis, which also demonstrated reduced fractional anisotropy and increased mean diffusivity of the superior longitudinal fasciculus, particularly the premotor components. Statistical parametric mapping of the [18F]-fluorodeoxyglucose positron emission tomography scans revealed focal hypometabolism of superior lateral premotor cortex and supplementary motor area, although there was some variability across subjects noted with CortexID analysis. [11C]-Pittsburg compound B positron emission tomography binding was increased in only one of the 12 subjects, although it was unclear whether the increase was actually related to the primary progressive apraxia of speech. A syndrome characterized by progressive pure apraxia of speech clearly exists, with a neuroanatomic correlate of superior lateral premotor and supplementary motor atrophy, making this syndrome distinct from primary progressive aphasia

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF
    • 

    corecore