10 research outputs found

    Tip-enhanced near-field optical microscopy

    Get PDF
    Die vorliegende Arbeit beschreibt neue Entwicklungen im Verständnis und in der Umsetzung der optischen Nahfeldmikroskopie (scattering - type scanning near-field optical microscopy, s-SNOM) für die lineare und nichtlineare optische Bildgebung mit ultrahoher Auslösung und Empfindlichkeit. Die fundamentalen Mechanismen, die der Feldverstärkung am Ende von ultrascharfen metallischen Spitzen zugrunde liegen, werden systematisch behandelt. Die plasmonischen Eigenschaften der Spitze wurden erstmalig beobachtet, und ihre Bedeutung für die optische Kopplung zwischen Spitze und Probe sowie für die sich ergebende Einengung des Nahfeldes wird diskutiert. Ein aperturloses Nahfeldmikroskop für die spitzenverstärkte Ramanspektroskopie (tip-enhanced Raman spectroscopy, TERS) wurde entwickelt. Die Grundlagen der TERS und die wesentliche Rolle des plasmonischen Verhaltens der Spitze sowie die klare Unterscheidung von Nahfeld-Ramansignatur und Fernfeld-Abbildungsartefakten werden beschrieben. Nahfeld Raman Verstärkungsfaktoren von bis zu 10 wurden erreicht, was einer Feldverstärkung von bis zu 130 entspricht und Raman-Messungen bis auf Einzel-Molekül-Niveau ermöglichte. Die optische Frequenzverdopplung (second harmonic generation, SHG) an einzelnen Spitzen wurde untersucht. Aufgrund ihrer teilweise asymmetrischen Nanostruktur erlauben die Spitzen eine klare Unterscheidung von lokalen Oberflächen und nichtlokalen Volumenbeiträgen zur nichtlinearen Polarisation sowie die Analyse ihrer Polarisations- und Emissions-Auswahlregeln. Die spitzenverstärkte Frequenzverdopplungs-Spektroskopie und die räumlich hoch aufgelöste Abbildung auf Basis des dielektrischen Kontrasts werden demonstriert. Mit Hilfe einer phasen-sensitiven, Selbst-homodyn-Frequenzverdopplungs-s-SNOM-Abbildungsmethode kann die Oberflächen-Struktur der intrinsischen 180-Domänen im hexagonal multiferroischen YMnO aufgelöst werden.This thesis describes the implementation of scattering-type near-field optical microscopy (s-SNOM) for linear and nonlinear optical imaging. The technique allows for optical spectroscopy with ultrahigh spatial resolution. New results on the microscopic understanding of the imaging mechanism and the employment of s-SNOM for structure determination at solid surfaces are presented. The method relies on the use of metallic probe tips with apex radii of only few nanometers. The local-field enhancement and its dependence on material properties are investigated. The plasmonic character of Au tips is identified and its importance for the optical tip-sample coupling and subsequent near-field confinement are discussed. The experimental results offer valuable criteria in terms of tip-material and structural parameters for the choice of suitable tips required in s-SNOM. An near-field optical microscope is developed for tip-enhanced Raman spectroscopy (TERS) studies. The principles of TERS and the role of the tip plasmonic behavior together with clear distinction of near-field Raman signature from far-field imaging artifacts are described. TERS results of monolayer and submonolayer molecular coverage on smooth Au surfaces are presented. Second harmonic generation (SHG) from individual tips is investigated. As a partially asymmetric nanostructure, the tip allows for the clear distinction of local surface and nonlocal bulk contributions to the nonlinear polarization and the analysis of their polarization and emission selection rules. Tip-enhanced SH microscopy and dielectric contrast imaging with high spatial resolution are demonstrated. SHG couples directly to the ferroelectric ordering in materials and in combination with scanning probe microscopy can give access to the morphology of mesoscopic ferroelectric domains. Using a phase sensitive self-homodyne SHG s-SNOM imaging method, the surface topology of 180 intrinsic domains in hexagonal multiferroic YMnO is resolved

    Mass innovation - a competitive strategy for high-tech B2B SMEs

    No full text
    Abstract Innovation strongly relates to successful business: growth, competitiveness, uniqueness, higher sales volumes, profitability, and higher market value. In their strive for growth, Small and Medium Enterprises often face serious challenges regarding the adoption of their innovations. While many ideas succeed and gain market share or even create new markets, other very promising innovations never reached the adoption threshold to make it on the mainstream markets. This constitutes a deep chasm that needs to be crossed for the company to fully leverage its technological competence and truly enjoy the fruits of innovation. Furthermore, today's knowledge intensive society, companies- boundaries become blurred and users expect tailored solutions to fit their individual needs. In this context, traditional business models like mass production prove insufficient for long term success, especially when the subject of innovation is High-Tech of a non-consumer type. In the present work a strategic framework is developed as enabler for High-Tech B2B SMEs to successfully cross the chasm to the mainstream market. The concept of Mass Innovation is introduced as synergetic combination of Open Innovation, Mass Customization and Duality oriented organization design. This is intended as empowering and dynamic infrastructure for those companies required to sell innovations rather than products, under the pressure of their customers. The necessary company capabilities are identified, as well as the success factors. The Mass Innovation strategic framework is exemplified on Photon, one company falling under the High-Tech B2B SME category. Photon is coming form the pure customizer side of the exploration-exploitation continuum, and is currently struggling to cross the chasm. A thorough analysis of the company, its capabilities and market is provided, and conclusions are drawn regarding the level of readiness of the organization and offerings for Mass Innovation. Clear suggestions and offered on how to improve the company-s capabilities and therewith performance.8

    Tip-Enhanced Raman Imaging and Nanospectroscopy: Sensitivity, Symmetry, and Selection Rules

    No full text
    corecore