190 research outputs found

    Antigen Presenting Cells Contribute to Persistent Immune Activation Despite Antiretroviral Therapy Initiation During Hyperacute HIV-1 Infection

    Get PDF
    Human immunodeficiency virus (HIV)-induced changes in immune cells during the acute phase of infection can cause irreversible immunological damage and predict the rate of disease progression. Antiretroviral therapy (ART) remains the most effective strategy for successful immune restoration in immunocompromised people living with HIV and the earlier ART is initiated after infection, the better the long-term clinical outcomes. Here we explored the effect of ART on peripheral antigen presenting cell (APC) phenotype and function in women with HIV-1 subtype C infection who initiated ART in the hyperacute phase (before peak viremia) or during chronic infection. Peripheral blood mononuclear cells obtained longitudinally from study participants were used for immunophenotyping and functional analysis of monocytes and dendritic cells (DCs) using multiparametric flow cytometry and matched plasma was used for measurement of inflammatory markers IL-6 and soluble CD14 (sCD14) by enzyme-linked immunosorbent assay. HIV infection was associated with expansion of monocyte and plasmacytoid DC (pDC) frequencies and perturbation of monocyte subsets compared to uninfected persons despite antiretroviral treatment during hyperacute infection. Expression of activation marker CD69 on monocytes and pDCs in early treated HIV was similar to uninfected individuals. However, despite early ART, HIV infection was associated with elevation of plasma IL-6 and sCD14 levels which correlated with monocyte activation. Furthermore, HIV infection with or without early ART was associated with downmodulation of the co-stimulatory molecule CD86. Notably, early ART was associated with preserved toll-like receptor (TLR)-induced IFN-α responses of pDCs. Overall, this data provides evidence of the beneficial impact of ART initiated in hyperacute infection in preservation of APC functional cytokine production activity; but also highlights persistent inflammation facilitated by monocyte activation even after prolonged viral suppression and suggests the need for therapeutic interventions that target residual immune activation

    Interleukin 1-Beta (IL-1) Production by Innate Cells Following TLR Stimulation Correlates With TB Recurrence in ART-Treated HIV-Infected Patients

    No full text
    BACKGROUND: Tuberculosis (TB) remains a major cause of global morbidity and mortality, especially in the context of HIV co-infection, since immunity is not completely restored following antiretroviral therapy (ART). The identification of immune correlates of risk for TB disease could help in the design of host-directed therapies and clinical management. This study aimed to identify innate immune correlates of TB recurrence in HIV+ ART-treated individuals with a history of previous successful TB treatment. METHODS: Twelve participants with a recurrent episode of TB (cases) were matched for age, sex, time on ART, pre-ART CD4 count with 12 participants who did not develop recurrent TB in 60 months of follow-up (controls). Cryopreserved peripheral blood mononuclear cells from time points prior to TB recurrence were stimulated with ligands for Toll like receptors (TLR) including TLR-2, TLR-4, and TLR-7/8. Multi-color flow cytometry and intracellular cytokine staining was used to detect IL-1β, TNF-α, IL-12 and IP10 responses from monocytes and myeloid dendritic cells (mDCs). RESULTS: Elevated production of IL-1β from monocytes following TLR-2, TLR-4 and TLR-7/8 stimulation was associated with reduced odds of TB recurrence. In contrast, production of IL-1β from both monocytes and mDCs following Bacillus Calmette-Guérin (BCG) stimulation was associated with increased odds of TB recurrence (risk of recurrence increased by 30% in monocytes and 42% in mDCs respectively). CONCLUSION: Production of IL-1β by innate immune cells following TLR and BCG stimulations correlated with differential TB recurrence outcomes in ART-treated patients and highlights differences in host response to TB

    HIV-1 subtype C envelope characteristics associated with divergent rates of chronic disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 envelope diversity remains a significant challenge for the development of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are incompletely understood. HIV-1 subtype C envelope in particular shows significant differences and unique characteristics compared to its subtype B counterpart. Here we applied the single genome sequencing strategy of plasma derived virus from a cohort of therapy naïve chronically infected individuals in order to study diversity, divergence patterns and envelope characteristics across the entire HIV-1 subtype C gp160 in 4 slow progressors and 4 progressors over an average of 19.5 months.</p> <p>Results</p> <p>Sequence analysis indicated that intra-patient nucleotide diversity within the entire envelope was higher in slow progressors, but did not reach statistical significance (p = 0.07). However, intra-patient nucleotide diversity was significantly higher in slow progressors compared to progressors in the C2 (p = 0.0006), V3 (p = 0.01) and C3 (p = 0.005) regions. Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs) were observed in the V1-V4 in slow progressors compared to progressors (p = 0.009 and p = 0.02 respectively). Similarly, gp41 in the progressors was significantly longer and had fewer PNGs compared to slow progressors (p = 0.02 and p = 0.02 respectively). Positive selection hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots mapped mainly to gp41 in progressors. Signature consensus sequence differences between the groups occurred mainly in gp41.</p> <p>Conclusions</p> <p>These data suggest that separate regions of envelope are under differential selective forces, and that envelope evolution differs based on disease course. Differences between slow progressors and progressors may reflect differences in immunological pressure and immune evasion mechanisms. These data also indicate that the pattern of envelope evolution is an important correlate of disease progression in chronic HIV-1 subtype C infection.</p

    Investigating neutrophil cell death in TB pathogenesis

    Get PDF
    BACKGROUND: Neutrophils are one of the major early role players in antimycobacterial immunity. Upon infection, neutrophils can undergo NETosis, a cell death characterized by release of neutrophil extracellular traps (NETs). The role of NETosis in TB progression remains poorly characterized. We aim to characterize mechanisms underlying NETosis during TB pathogenesis by identifying genes that drive the cell death, and to determine their potential as markers of disease progression in high-risk individuals. Finally, we intend to evaluate neutrophil associated genes as targets for host directed therapy to reduce pathological damage caused by NETosis. METHODS: Quantitative PCR will be used to quantify expression of specific genes identified in the blood of individuals with active lung disease (n=30), compared to those from healthy (n=30) and latently infected individuals (LTBI) (n=30). In addition, temporal events associated with NETosis will be measured using live microscopy in a neutrophil in vitro model of Mycobacterium tuberculosis (Mtb) infection. Candidate genes found to be associated with NETosis will be targeted with pharmaceutical inhibitors. CONCLUSION: Genes associated with neutrophil mediated cell death may serve as potential biomarkers of pathological damage and disease progression, as well as targets for host-directed therapy

    Generation and characterization of infectious molecular clones of transmitted/founder HIV-1 subtype C viruses

    Get PDF
    The genetic diversity of HIV impedes vaccine development. Identifying the viral properties of transmitted/founder (T/F) variants may provide a common vaccine target. To study the biological nature of T/F viruses, we constructed full-length clones from women detected during Fiebig stage I acute HIV-1 infection (AHI) from heterosexual male-to-female (MTF) transmission; and clones after one year of infection using In-Fusion-based cloning. Eighteen full-length T/F clones were generated from 9 women and six chronic infection clones were from 2 individuals. All clones but one were non-recombinant subtype C. Three of the 5 T/F clones and 3 chronic clones tested replicated efficiently in PBMCs and utilised CCR5 coreceptor for cell entry. Transmitted/founder and chronic infection clones displayed heterogenous in vitro replicative capacity and resistance to type I interferon. T/F viruses had shorter Env glycoproteins and fewer N-linked glycosylation sites in Env. Our findings suggest MTF transmission may select viruses with compact envelopes

    The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing

    Get PDF
    Viral immune evasion by sequence variation is a major hindrance to HIV-1 vaccine design. To address this challenge, our group has developed a computational model, rooted in physics, that aims to predict the fitness landscape of HIV-1 proteins in order to design vaccine immunogens that lead to impaired viral fitness, thus blocking viable escape routes. Here, we advance the computational models to address previous limitations, and directly test model predictions against in vitro fitness measurements of HIV-1 strains containing multiple Gag mutations. We incorporated regularization into the model fitting procedure to address finite sampling. Further, we developed a model that accounts for the specific identity of mutant amino acids (Potts model), generalizing our previous approach (Ising model) that is unable to distinguish between different mutant amino acids. Gag mutation combinations (17 pairs, 1 triple and 25 single mutations within these) predicted to be either harmful to HIV-1 viability or fitness-neutral were introduced into HIV-1 NL4-3 by site-directed mutagenesis and replication capacities of these mutants were assayed in vitro. The predicted and measured fitness of the corresponding mutants for the original Ising model (r = −0.74, p = 3.6×10−6) are strongly correlated, and this was further strengthened in the regularized Ising model (r = −0.83, p = 3.7×10−12). Performance of the Potts model (r = −0.73, p = 9.7×10−9) was similar to that of the Ising model, indicating that the binary approximation is sufficient for capturing fitness effects of common mutants at sites of low amino acid diversity. However, we show that the Potts model is expected to improve predictive power for more variable proteins. Overall, our results support the ability of the computational models to robustly predict the relative fitness of mutant viral strains, and indicate the potential value of this approach for understanding viral immune evasion, and harnessing this knowledge for immunogen design

    Tuberculous meningitis is associated with higher cerebrospinal HIV-1 viral loads compared to other HIV-1-associated meningitides.

    Get PDF
    To gain a better understanding of the immunopathogenesis of tuberculous meningitis (TBM) and identify potential diagnostic biomarkers that may discriminate TBM from other HIV-1-associated meningitides, we assessed HIV-1 viral load levels, drug resistance patterns in antiretroviral therapy (ART)-experienced patients with persistent viremia and soluble immunological analytes in peripheral blood and cerebrospinal fluid (CSF) of HIV-1 infected patients with TBM versus other meningitides. One hundred and three matched blood and CSF samples collected from HIV-1 infected patients with TBM or other meningitides presenting at a hospital in Durban, South Africa, from January 2009 to December 2011 were studied. HIV-1 RNA and 28 soluble immunological potential biomarkers were quantified in blood plasma and CSF. Viremic samples were assessed for HIV-1 drug resistance mutations. There were 16 TBM, 46 probable TBM, 35 non-TBM patients, and six unclassifiable patients. TBM and non-TBM patients did not differ in median plasma viral load but TBM patients had significantly higher median CSF viral load than non-TBM participants (p = 0.0005). No major drug resistance mutations were detected in viremic samples. Interleukin (IL)-1β, IL-17, platelet derived growth factor (PDGF)-BB, granulocyte colony stimulating factor (G-CSF) and cathelicidin were significantly elevated in the CNS of TBM participants compared to other patients although these associations were lost after correction for false discovery. Our data suggest that TB co-infection of the CNS is associated with enhanced localized HIV-1 viral replication but none of the evaluated soluble immunological potential biomarkers could reliably distinguish TBM from other HIV-associated meningitides

    Hepatitis B Virus Prevalence and Mother-to-Child Transmission Risk in an HIV Early Intervention Cohort in KwaZulu-Natal, South Africa

    Get PDF
    BACKGROUND: HIV and hepatitis B virus (HBV) prevalence are both high in KwaZulu-Natal, South Africa. HIV coinfection negatively affects HBV prognosis and can increase the likelihood of HBV mother-to-child transmission (MTCT). In an early HIV infant treatment intervention cohort of HIV-transmitting mother-child pairs in KwaZulu-Natal, we characterized maternal HBV prevalence and screened infants at risk. METHODS: Infants were treated for HIV MTCT at birth, and combination regimens incidentally active against HBV were initiated within 21 days. Maternal samples (N = 175) were screened at birth for HBV infection (HBV surface antigen [HBsAg]), exposure to HBV (HBV anti-core IgG), and vaccination responses (HBV anti-S positive without other HBV markers). Infants of mothers who were HBV positive were screened for HBsAg at 1 and 12 months. RESULTS: Evidence of HBV infection was present in 8.6% (n = 15) of maternal samples. Biomarkers for HBV exposure were present in 31.4% (n = 55). Evidence of HBV vaccination was uncommon in mothers (8.0%; n = 14). Despite prescription of antiretroviral therapy (ART) active against HBV, HBV DNA was detectable in 46.7% (7/15) of mothers who were HBsAg positive. Three mothers had HBV viral loads >5.3 log10 IU/mL, making them high risk for HBV MTCT. Screening of available infant samples at 1 month (n = 14) revealed no cases of HBV MTCT. At 12 months, we identified 1 HBV infection (1/13), and serologic evidence of vaccination was present in 53.8% (7/13) of infants. DISCUSSION: This vulnerable cohort of HIV-transmitting mothers had a high prevalence of undiagnosed HBV. Early infant ART may have reduced the risk of MTCT in high-risk cases. Current HBV guidelines recommend ART prophylaxis, but these data underline the pressing need to increase availability of birth dose vaccines

    Early Initiation of Antiretroviral Therapy Preserves the Metabolic Function of CD4+ T Cells in Subtype C Human Immunodeficiency Virus 1 Infection

    Get PDF
    Background: Immune dysfunction often persists in people living with human immunodeficiency virus (HIV) who are on antiretroviral therapy (ART), clinically manifesting as HIV-1-associated comorbid conditions. Early ART initiation may reduce incidence of HIV-1–associated immune dysfunction and comorbid conditions. Immunometabolism is a critical determinant of functional immunity. We investigated the effect of HIV-1 infection and timing of ART initiation on CD4+ T cell metabolism and function. // Methods: Longitudinal blood samples from people living with HIV who initiated ART during hyperacute HIV-1 infection (HHI; before peak viremia) or chronic HIV-1 infection (CHI) were assessed for the metabolic and immune functions of CD4+ T cells. Metabolite uptake and mitochondrial mass were measured using fluorescent analogues and MitoTracker Green accumulation, respectively, and were correlated with CD4+ T cell effector functions. // Results: Initiation of ART during HHI prevented dysregulation of glucose uptake by CD4+ T cells, but glucose uptake was reduced before and after ART initiation in CHI. Glucose uptake positively correlated with interleukin-2 and tumor necrosis factor-α production by CD4+ T cells. CHI was associated with elevated mitochondrial mass in effector memory CD4+ T cells that persisted after ART and correlated with PD-1 expression. // Conclusions: ART initiation in HHI largely prevented metabolic impairment of CD4+ T cells. ART initiation in CHI was associated with persistently dysregulated immunometabolism of CD4+ T cells, which was associated with impaired cellular functions and exhaustion
    corecore