55 research outputs found
Mineral dust photochemistry induces nucleation events in the presence of SO2
Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO(2) to H(2)SO(4) in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France
Markets and climate are driving rapid change in farming practices in Savannah West Africa
Agricultural practices have constantly changed in West Africa, and understanding the factors that have driven the changes may help guide strategies to promote sustainable agriculture in the region. To contribute to such efforts, this paper analyzes drivers of change in farming practices in the region using data obtained from surveys of 700 farming households in five countries (Burkina Faso, Ghana, Mali, Niger and Senegal). The results showed that farmers have adopted various practices in response to the challenges they have faced during the last decade. A series of logit models showed that most changes farmers made to their practices are undertaken for multiple reasons. Land use and management changes including expanding farmed areas and using mineral fertilization and manure are positively related to perceived changes in the climate, such as more erratic rainfall. Planting new varieties, introducing new crops, crop rotation, expanding farmed area and using pesticides are positively associated with new market opportunities. Farm practices that require relatively high financial investment such as use of pesticides, drought-tolerant varieties and improved seeds were positively associated with the provision of technical and financial support for farmers through development projects and policies. Changes in markets and climate are both helping to promote needed changes in farming practices in West Africa. Therefore, policies that foster the development of markets for agricultural products, and improved weather- and climate-related information linked to knowledge of appropriate agricultural innovations in different environments are needed
Agroforesterie et services écosystémiques en zone tropicale
Respectueux de l’environnement et garantissant une sécurité alimentaire soutenue par la diversification des productions et des revenus qu’ils procurent, les systèmes agroforestiers apparaissent comme un modèle prometteur d’agriculture durable dans les pays du Sud les plus vulnérables aux changements globaux. Cependant, ces systèmes agroforestiers ne peuvent être optimisés qu’à condition de mieux comprendre et de mieux maîtriser les facteurs de leurs productions. L’ouvrage présente un ensemble de connaissances récentes sur les mécanismes biophysiques et socio-économiques qui sous-tendent le fonctionnement et la dynamique des systèmes agroforestiers. Il concerne, d’une part les systèmes agroforestiers à base de cultures pérennes, telles que cacaoyers et caféiers, de régions tropicales humides en Amérique du Sud, en Afrique de l’Est et du Centre, d’autre part les parcs arborés et arbustifs à base de cultures vivrières, principalement de céréales, de la région semi-aride subsaharienne d’Afrique de l’Ouest. Il synthétise les dernières avancées acquises grâce à plusieurs projets associant le Cirad, l’IRD et leurs partenaires du Sud qui ont été conduits entre 2012 et 2016 dans ces régions. L’ensemble de ces projets s’articulent autour des dynamiques des systèmes agroforestiers et des compromis entre les services de production et les autres services socio-écosystémiques que ces systèmes fournissent
Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol
International audienceThe interactions of aerosols consisting of humic acids with gaseous nitrogen dioxide (NO2) were investigated under different light conditions in aerosol flow tube experiments at ambient pressure and temperature. The results show that NO2 is converted on the humic acid aerosol into nitrous acid (HONO), which is released from the aerosol and can be detected in the gas phase at the reactor exit. The formation of HONO on the humic acid aerosol is strongly activated by light: In the dark, the HONO-formation was below the detection limit, but it was increasing with the intensity of the irradiation with visible light. Under simulated atmospheric conditions with respect to the actinic flux, relative humidity and NO2-concentration, reactive uptake coefficients γrxn for the NO2→HONO conversion on the aerosol between γrxn 60% RH). The measured uptake coefficients for the NO2→HONO conversion are too low to explain the HONO-formation rates observed near the ground in rural and urban environments by the conversion of NO2→HONO on organic aerosol surfaces, even if one would assume that all aerosols consist of humic acid only. It is concluded that the processes leading to HONO formation on the Earth surface will have a much larger impact on the HONO-formation in the lowermost layer of the troposphere than humic materials potentially occurring in airborne particles
Impact of irrigation water quality on soil nitrifying and total bacterial communities
Disturbance induced by two contrasting irrigation regimes (groundwater versus urban wastewater) was evaluated on a sandy agricultural soil through chemical and microbial analyses. Contrary to wastewater, groundwater displayed very high nitrate contents but small amounts of ammonium and organic matter. Despite these strong compositional shifts, soil organic carbon and nitrogen, nitrate and ammonium contents were not significantly different in both types of irrigated plot. Moreover, neither microbial biomass nor its activity, determined as fluorescein diacetate hydrolysis activity, was influenced by irrigation regimes. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA fragments, was also weakly impacted as molecular fingerprints shared an overall similarity of 85%. Ammonia-oxidizing bacterial community (AOB) was monitored by DGGE of the functional molecular marker amoA gene (alpha subunit of the ammonia monooxygenase). Surprisingly, no amoA signals were obtained from plots irrigated with groundwater, whereas signal intensities were high in all plots under wastewater. Among the last, compositional shifts of the AOB community were weak. Overall, impact of irrigation water quality on soil chemistry could not be evidenced, whereas effects were low on the total bacterial compartment but marked on the AOB community
Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol
International audienceThe interactions of aerosols consisting of humic acids with gaseous nitrogen dioxide (NO2) were investigated under different light conditions in aerosol flow tube experiments at ambient pressure and temperature. The results show that NO2 is converted on the humic acid aerosol into nitrous acid (HONO), which is released from the aerosol and can be detected in the gas phase at the reactor exit. The formation of HONO on the humic acid aerosol is strongly activated by light: In the dark, the HONO-formation was below the detection limit, but it was increasing with the intensity of the irradiation with visible light. Under simulated atmospheric conditions with respect to the actinic flux, relative humidity and NO2-concentration, reactive uptake coefficients ?rxn for the NO2?HONO conversion on the aerosol between ?rxn -7 (in the dark) and ?rxn=6×10-6 were observed. The observed uptake coefficients decreased with increasing NO2-concentration in the range from 2.7 to 280 ppb and were dependent on the relative humidity (RH) with slightly reduced values at low humidity (60% RH). The measured uptake coefficients for the NO2?HONO conversion are too low to explain the HONO-formation rates observed near the ground in rural and urban environments by the conversion of NO2?HONO on organic aerosol surfaces, even if one would assume that all aerosols consist of humic acid only. It is concluded that the processes leading to HONO formation on the Earth surface will have a much larger impact on the HONO-formation in the lowermost layer of the troposphere than humic materials potentially occurring in airborne particles
- …