1,167 research outputs found

    Teaching data structures through group based collaborative peer interactions

    Get PDF

    Model of the optical emission of a driven semiconductor quantum dot: phonon-enhanced coherent scattering and off-resonant sideband narrowing

    Get PDF
    We study the crucial role played by the solid-state environment in determining the photon emission characteristics of a driven quantum dot. For resonant driving, we predict a phonon-enhancement of the coherently emitted radiation field with increasing driving strength, in stark contrast to the conventional expectation of a rapidly decreasing fraction of coherent emission with stronger driving. This surprising behaviour results from thermalisation of the dot with respect to the phonon bath, and leads to a nonstandard regime of resonance fluorescence in which significant coherent scattering and the Mollow triplet coexist. Off-resonance, we show that despite the phonon influence, narrowing of dot spectral sideband widths can occur in certain regimes, consistent with an experimental trend.Comment: Published version. 5 pages, 2 figures, plus 4 page supplement. Title changed, figure 1 revised, various edits and additions to the tex

    Anticrossings in Foerster Coupled Quantum Dots

    Full text link
    We consider two coupled generic quantum dots, each modelled by a simple potential which allows the derivation of an analytical expression for the inter-dot Foerster coupling, in the dipole-dipole approximation. We investigate the energy level behaviour of this coupled two-dot system under the influence of an external applied electric field and predict the presence of anticrossings in the optical spectra due to the Foerster interaction.Comment: 13 pages, 7 figures. Published version. Substantially revised, new sections on decay rates, absorption spectra, and tunnelin

    Coherent and incoherent dynamics in excitonic energy transfer: correlated fluctuations and off-resonance effects

    Full text link
    We study the nature of the energy transfer process within a pair of coupled two-level systems (donor and acceptor) subject to interactions with the surrounding environment. Going beyond a standard weak-coupling approach, we derive a master equation within the polaron representation that allows for investigation of both weak and strong system-bath couplings, as well as reliable interpolation between these two limits. With this theory, we are then able to explore both coherent and incoherent regimes of energy transfer within the donor-acceptor pair. We elucidate how the degree of correlation in the donor and acceptor fluctuations, the donor-acceptor energy mismatch, and the range of the environment frequency distribution impact upon the energy transfer dynamics. In the resonant case (no energy mismatch) we describe in detail how a crossover from coherent to incoherent transfer dynamics occurs with increasing temperature [A. Nazir, Phys. Rev. Lett. 103, 146404 (2009)], and we also explore how fluctuation correlations are able to protect coherence in the energy transfer process. We show that a strict crossover criterion is harder to define when off-resonance, though we find qualitatively similar population dynamics to the resonant case with increasing temperature, while the amplitude of coherent population oscillations also becomes suppressed with growing site energy mismatch.Comment: 14 pages, 7 figures, builds upon PRL 103, 146404 (2009) (arXiv:0906.0592). Comments welcome. V2 - Section IV shortened to improve presentation, references updated, new Imperial College affiliation added for A. Nazir. Published versio

    Maximising the interfacial toughness of thin coatings and substrate through optimisation of defined parapmeters

    Get PDF
    The influence of three parameters, i.e. interfacial roughness λ, coating thickness h and impurity radius r at the coating–substrate interface on interfacial toughness, has been investigated within the framework of two approaches, i.e. thermodynamics and fracture mechanics. The governing equations for both the approaches have been derived independently and then fused to form a governing law for evaluating the interfacial toughness. The analysis in this paper which considers three parameters (λ, h and r) has been divided into three setups. Each setup is used to analyse the effect of one variable parameter on interfacial toughness while keeping the other two parameters constant. Three samples for each setup were prepared considering the requirements of constant and variable parameters for each setup. Simulation techniques founded on the experimental studies have been developed during this research in order to find the optimised values of three parameters. These optimised values act as critical values (boundary point) between coating fail-safe and coating fail conditions. The experiment employed ASTM-B117 test, which is used to analyse the interfacial toughness of samples under each setup. These experiments showed excellent, quantitative agreement with the simulation trends predicted by the theoretical model

    A Predictive Model for Life Assessment of Automotive Exhaust Mufflers Subject to Internal Corrosion Failure due to Exhaust Gases Condensation

    Get PDF
    A study has been presented of pitting corrosion on internal walls of automotive exhaust muffler due to exhaust gases condensation. The problem mainly exists in the rear section of exhaust system close to tail end pipe such as muffler, especially when the temperature of muffler does not go up during short distance run or winter. The water vapor condenses on the muffler's inner wall in the form of water droplets. The dissolution of corrosive gases which are coming from internal combustion of engine as well as condensation of low-pH acidic vapors in the water droplet can cause severe pitting corrosion on standard exhaust steel. In this work, an experiment is reported for internal corrosion, by using mufflers as test bed subjected to different environmental conditions. Based on observations, a mechanistic model has been developed which involves three main techniques (i) the dropwise condensation technique predicts the condensation rate and is based on heat and mass transfer theory (ii) the species breakdown in the droplet is established through the main thermodynamic and chemical equilibrium (iii) the pitting corrosion involving pit depth is predicted using electrochemical kinetic reactions, species transport and chemical reactions occurring inside the droplet. Lastly, the accuracy of model has been validated by comparison between experimental and predicted results showing a good agreement

    An Optimised Approach of Protecting and Sustaining Large Vehicle System

    Get PDF
    This article is a synopsis of our research and highlights the outcomes and its impact. It was conducted for the development of a sustainable approach to protect and sustain large vehicles in sheltered environment for their enhanced longevity. In this research various modes of failures linked directly or indirectly to the structural ageing of large vehicles were identified, measured, and analysed. Based upon the research conducted; A frame-work to retard structural failures and in-situ condition monitoring has been proposed with an objective to prolong the structural longevity cost effectively

    Design and delivery of cloud computing syllabus for computing undergraduates

    Get PDF

    Efficient high-fidelity quantum computation using matter qubits and linear optics

    Full text link
    We propose a practical, scalable, and efficient scheme for quantum computation using spatially separated matter qubits and single photon interference effects. The qubit systems can be NV-centers in diamond, Pauli-blockade quantum dots with an excess electron or trapped ions with optical transitions, which are each placed in a cavity and subsequently entangled using a double-heralded single-photon detection scheme. The fidelity of the resulting entanglement is extremely robust against the most important errors such as detector loss, spontaneous emission, and mismatch of cavity parameters. We demonstrate how this entangling operation can be used to efficiently generate cluster states of many qubits, which, together with single qubit operations and readout, can be used to implement universal quantum computation. Existing experimental parameters indicate that high fidelity clusters can be generated with a moderate constant overhead.Comment: 5 pages, 3 figures, broader introduction and improved scalability of cluster state generatio
    • …
    corecore