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Abstract

A study has been presented of pitting corrosion on internal walls of automotive exhaust muffler due to exhaust
gases condensation. The problem mainly exists in the rear section of exhaust system close to tail end pipe such
as muffler, especially when the temperature of muffler does not go up during short distance run or winter. The
water vapor condenses on the muffler’s inner wall in the form of water droplets. The dissolution of corrosive
gases which are coming from internal combustion of engine as well as condensation of low-pH acidic vapors in
the water droplet can cause severe pitting corrosion on standard exhaust steel. In this work, an experiment is
reported for internal corrosion, by using mufflers as test bed subjected to different environmental conditions.
Based on observations, a mechanistic model has been developed which involves three main techniques (i) the
dropwise condensation technique predicts the condensation rate and is based on heat and mass transfer theory
(ii) the species breakdown in the droplet is established through the main thermodynamic and chemical
equilibrium (iii) the pitting corrosion involving pit depth is predicted using electrochemical kinetic reactions,
species transport and chemical reactions occurring inside the droplet. Lastly, the accuracy of model has been
validated by comparison between experimental and predicted results showing a good agreement
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1 Introduction

Modern automotive exhaust systems consist of several individual sections from engine side to the tail end pipe.
The material properties of these sections directly relate with the operating temperature to which each section is
submitted, ranging from 600 — 900°C near engine (hot section) to 100 — 350°C for parts situated at a distance
from engine such as mufflers and tail end pipe (cold section) [1]. The material properties of exhaust required for
hot section include high-temperatures strength, thermal fatigue properties, oxidation resistance and salt
corrosion resistance. While the same required for cold section away from engine is corrosion resistance to salt
damage and exhaust gas condensate. The corrosion problem is mostly observed during-short distance driving,
when the temperature does not increase and wet corrosion due to condensation mainly in muffler at cold end
becomes the major factor of failure [2]. Typical types of corrosion mechanisms observed in exhaust systems
include general corrosion, pitting corrosion, crevice corrosion, inter-granular corrosion, and oxidation, etc.
Corrosion failures may cause perforation of components causing exhaust leaks in internal components that may
result in noise issues due to change in muffler acoustics and can also result in pollution causing damage to
environment. Perforation can be a small area due to localised corrosion such as pitting in which pits can
penetrate the material thickness [3].

Pitting corrosion is one of the major problems due to which automotive exhaust components have a limited
lifetime as it is basically attacking the muffler since long ago. Even stainless steel does not possess effective
corrosion resistance due to very highly aggressive environment. The resistance of different steel grades to
pitting corrosion can generally be compared on the basis of their alloy composition via their pitting resistance
equivalent number, PREN [4]. However, this is questionable for the special conditions existing in automotive
exhaust systems, with their frequent wet/dry alternation and their short operating times compared with overall
life cycles [5]. The important area of research is not only on the selection of material for maximum resistance to
the onset of pitting corrosion but also on how the pitting can be monitored as well as predicted using the state of
art condition monitoring technique. This technique if incorporated in muffler design of modern automotive
applications e.g. cars can help to prevent early failures of exhaust systems under wet conditions.



This research focuses mainly inside wet corrosion of automotive exhaust muffler at cold end. Wet corrosion of
inner muffler wall due to gas condensation is one of the major causes of muffler failure [5]. The condensation of
water droplets and dissolution of corrosive gases in droplets act as a major medium for internal corrosion of
muffler incorporating the high contents of carbonate ions, sulphate ions, nitrate ions and chloride ions which
constantly accumulate as the engine repeatedly starts and stops [6]. This condensation process produces
carbonic acid, sulphuric acid, nitric acid and low levels of hydrochloric acid, creating critical conditions with
acidic pH-values which act as an ideal medium for pitting corrosion on standard exhaust steel [7]. Various
stainless steel grades which are highly resistant to pitting are used by the manufacturers in muffler design
however they are also much more expensive compared to conventional basic steel [8]. It is still difficult to
predict the long term behaviour of corrosion resistant stainless steel when subjected to real environment besides
their good corrosion prevention properties. For internal muffler corrosion, vast literatures have been available
mainly focusing on material selection for designing highly corrosion resistant mufflers [1, 9-15] however, there
are grey areas that need to be researched more in terms of developing predictive modelling techniques to address
early failure issues of mufflers due to exhaust gas condensation and corrosion. These predictive models can be
utilised by the manufacturers to design durable, high strength and corrosion resistant exhaust mufflers.

Previous research has modelled [16-28] general corrosion on metal surface as a result of coating failure.
However, the aim of this research is to develop a mechanistic model for exhaust muffler which is able to predict
the condensation rate of water droplets as well as species breakdown in droplets and pitting rate including pit
depth. Condensation happens when the temperature of muffler does not go up compared to the saturated vapour
flowing inside the muffler. The water vapor in the gas phase condenses on the muffler’s inner wall in two
different ways (i) bottom of the muffler condensation happens when the condensed liquid on side walls of
muffler slides to the bottom due to gravity and forms a flood of liquid at muffler’s base (ii) top of muffler
condensation happens when the liquid droplets nucleate, grow, detach and then fall due to gravity from the top
wall of muffler. The dissolution of corrosive gases which are coming from the internal combustion of engine in
the droplet can cause severe pitting corrosion. The area of muffler that is most critical and prone to pitting
corrosion is the top wall of muffler where condensation in the form of low pH acidic droplets directly takes
place.

This paper discuses a detailed experimental study which was conducted by using mufflers as test bed. These
mufflers were subjected to different types of exhaust gas condensates (like petrol and diesel) and were tested for
different conditions such as wall temperatures, gas temperatures and gas velocities. Corrosion sensors and
condensation sensors which were installed on the inner wall of muffler were used to monitor corrosion rates and
condensation rates respectively. Based on the observation recorded from experimentation, a holistic model was
developed in which the chemistry inside the droplet was computed from the thermodynamic equilibrium at the
interface of liquid gas and the electrochemical activity at metal surface related to the corrosion process. In
holistic design, a mechanistic corrosion model was combined with the drop wise condensation model to predict
internal muffler corrosion due to exhaust gas condensate. Finally, the model was validated by qualitative
comparison between experimental and predicted results showing a good agreement between the two.

2. Experimental
2.1. Experimental setup

Three exhaust mufflers: muffler 1, muffler 2 and muffler 3 of similar dimensions and material properties
fabricated using stainless steel were used as test samples. Muffler 2, at the start of experiment, was kept in low
concentration sodium chloride (NaCl) solution at 20 °C, 0.65 M of NaCl dissolved in 11.1 M deionized water
for 48 h while muffler 3 was kept in high concentration NaCl solution at 20 °C, 0.95 M of NaCl dissolved in
11.1 M deionized water for 48 h. Muffler 1 was only subjected to deionised water at 20°C for 48 h. The sample
mufflers were then removed and the inner side of mufflers was air dried to allow chloride ions to deposit on
mufflers inner wall. The step was performed to simulate and analyse the effect of road salt on the corrosion of
mufflers inner wall.

Next, in order to perform the real time measurements of condensation rate and corrosion rate, the mufflers top
cap was removed and the inner wall of each muffler was installed with condensation sensor having dimension
45 mm x 20 mm x 0.2 mm and corrosion sensor having dimension 40 mm x 20 mm x 0.Imm as shown in fig. 1
(a). After installation of sensors, mufflers cap was placed back and sealed in order to assure any gas leak during
experimentation. It is worth noting that the area on which the sensors were installed was first conditioned to
remove chloride ions which could affect the sensors functionality. The condensation sensors [29] are monolithic
integrated micro-sensors for monitoring the water droplets contents. The modules consist of a silicon integrated
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stray field capacitor including condensation detection area, a temperature sensor as well as a capacity frequency
converter. The condensation of water vapour is monitored by the electrical stray fields and is converted into
appropriate output signals. The corrosion sensors [30] consists of multiple plates made from the material of
interest which form the two electrodes. The electrodes are used in conjunction with a potentiostat for conducting
LPR measurements. The use of a relatively large counter electrode minimizes polarization effects at the counter
electrode to ensure that a stable reference potential is maintained throughout the experiments. Potential step-
sweeps are performed by applying a series of 30 steps over a range of £10 mV spanning a period of 2.6 s [31].

Both the condensation and corrosion sensors were adhered to the inner wall of all three mufflers with industrial
strength epoxy as shown in fig. 1(a). To guarantee the efficient performance of corrosion sensors, the bonding
agent (industrial strength epoxy) was placed on the opposite edges of the corrosion sensors so as to adhere the
sensors to the muffler stainless steel wall in a manner such that the ambient environment is allowed to rapidly
diffuse between the sensors and the steel. In order to allow the vapour condensation inside muffler, the outer
wall of muffler was fitted with the condenser in which cooling fluid from cooling tower was circulated through
the tubes as shown in fig 1(b). The low temperature of wall, lower than the temperature of gas allows the water
droplets to accumulate on the wall surface.

2.2. Accelerated testing and observations

The accelerated condensation corrosion testing for all three mufflers with pre-existing chloride deposits (in
muffler 2 and 3) was performed by allowing the exhaust gas to pass through mufflers and at the same time
cooling the mufflers walls by circulating the cooling water from cooling tower through the condenser tube. The
gas temperature and gas velocity were set as 333 K and 2 m/s respectively and the test ran constantly for 17
successive days (408 hours). The low temperature of wall allowed the nucleation of water droplets on the inner
side walls and top walls while surrounding gas flow accelerated the corrosion due to diffusion of corrosive gas
species through water droplets. For real time condensation monitoring, the condensation sensors were used to
monitor the condensation rate on the inner muffler wall by measuring the water droplets contents in the area
surrounding the sensor. The average wall temperature of three mufflers and corresponding condensation rates
for each muffler with respect to accelerated testing time is shown in fig. 2. (a) The results show that
condensation rate increases with the decrease in wall temperature and then becomes constant with stable low
wall temperature.

In order to analyse the effect of corrosive gas species on the corrosion of all mufflers, each muffler was also
passed with the exhaust gas of different percentage composition. The exhaust gas composition for each muffler
is shown in table 1. Muffler 1 was passed with pure air having no significant traces of any corrosive species,
muffler 2 was passed with gas (similar to diesel engine) having some contents of corrosive species such as
nitrogen oxides, carbon monoxide, hydrocarbons and sulphur dioxide. Muffler 3 was passed with gas (similar to
petrol engine) having considerable large contents of corrosive species. These corrosive species combined with
an accumulation of chloride ions diffuse through water droplets on mufflers wall where they dissociate and
produce carbonic acid, sulphuric acid, nitric acid and small levels of hydrochloric acid creating critical
conditions with acidic pH-values. The condensate from three mufflers was collected to perform pH and
chemical trace analysis (CTA). The CTA was performed to evaluate the condensate composition showing that
the condensate was composed of chloride ions Cl™, carbonate ions CO3 , sulphate ions SO3~and nitrate ions NO3
as shown in table 2. Results showed that condensate collected from muffler 1 which was passed with pure air
had pH close to neutral (~ 6) with no traces of corrosive ions. The condensate from muffler 2 showed pH equal
to 4 with some traces of Cl7,CO3,S0; and NO3 however, in case of muffler 3, the condensate showed low
acidic pH equal to 3 and large traces of C1~, CO3,SO; and NO3. The acidic pH condensate in case of muffler 2
and 3 resulted in a substantial wet corrosive impact on their inner walls and therefore aggravated pitting
corrosion, much intense in muffler 3 and was found absent in muffler 1. For real time pitting corrosion
monitoring, the linear polarization resistance measurements were used to compute corrosion pit depth for each
muffler. The pit depth d(t), um corresponding to pit density Npq, cm” for all the three mufflers due to corrosion
as shown in fig. 2 (b) was calculated by using relation [32],
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Where, Np,;; was calculated by counting the number of pits over an area of 1 cm” on all mufflers surface using
microscopy; ipy, Alem? is the passive current density; Agen, cm’” is the effective surface area of the corrosion
sensor; EW, g/mol represents the equivalent weight of the metal that reacts with 1 C of charge, thus contributing
to the corrosion and overall loss of material in the anodic (oxidation) reaction; p, g/mm” is the density of steel;



Ry, Q is the polarization resistance between the corrosive agents (electrolytic droplets) and the steel substrate
which in practice is not measured continuously by sensor, rather, periodic measurements are taken every
Tsam seconds; B, V/dec is called Stern-Geary constant having value of 30 mV for carbon steel [33]; F is the
faradays constant. All the three mufflers were analysed using scanning electron microspore (SEM). The results
showed highest pitting density in muffler 3, moderate in muffler 2 and least in muffler 1 as show in fig. 3.

To ensure repeatability, the experiment was repeated by considering two cases. Case 1: changing gas
temperature from 333 K to 313 K and keeping constant gas velocity 2 m/s; Case 2: keeping constant gas
temperature 333 K and changing gas velocity from 2 m/s to 15 m/s. For case 1, the results showed that low gas
temperature (313 K) compared to previous high gas temperature (333 K) resulted in high condensation because
of near saturation conditions of vapours. The high condensation rate resulted in more fresh water available to
drive large pitting corrosion rate (pit depth) in the mufflers as shown in fig. 4 (a-b). For case 2, the
condensation rate for all the three mufflers was found to be high and pitting corrosion rate was found to be
almost same in case of high gas velocity 15 m/s compared to low gas velocity 2 m/s as shown in fig. 5 (a-b). The
reason is that the high gas velocity turns the static droplet in to sliding and therefore results in large number of
droplets distribution over a surface area of muffler’s walls however; the overall maximum size of droplets
reduces. As the static droplets now turn in to sliding therefore more and more surface of muffler’s internal wall
become covered with Fe;S,, Fe;C leading to overall increase of the space-averaged corrosion rate. However, the
corrected localised corrosion rate in terms of pit depth is not much affected by gas velocity as shown in fig. 5 (a-
b).

Based on observation from above experimentation, a holistic model incorporating the concepts of both
condensation and corrosion has been developed in the next section.

3. Mathematical model

3.1. Condensation model

The problem of condensation mainly persists during short distance runs of vehicles, when the temperature does
not increase and the condensation occurs particularly inside the muffler component closest to the tail pipes [2].
At the start, a discontinuous film of liquid can form on the metal surface due to the drop wise condensation of
liquid. The drop wise condensation is a type of mixed-form condensation process, in which small liquid droplets
grow at the interface between a stable saturated vapor and another solid phase. These tiny droplets increase in
size with the continuous condensation of vapor on the gas-liquid interface. The droplets combine with the
neighbouring droplets due to continuous increase in droplet size. Thus, the water droplet size increases either
due to conjoining with nearby droplets or due to on-going vapor condensation. The increased size droplet, as a
result of drag force due to high velocity from the surrounding gas flow results in the movement of droplet in the
direction of gas flow. This process results in the continuous sweeping of any adjacent droplets in its way ahead.

When an individual droplet acquires its maximum size, the droplet may drift down along the inner surface of the
exhaust wall due to the gravity pull. Both forward and downward movements can be observed in this case. For
the case when the surrounding gas flow is slow, the droplets may detach from the top of exhaust wall and fall to
the bottom providing with vacant space for the development of new droplets. The process of development,
moving forward and falling will repeat again as a new cycle. The development of droplets due to condensation
is a random process; therefore an analytical method is deployed to model the droplet size distribution and
overall heat transfer process. The calculated values of droplet size distribution and the total heat flux through
the droplets are then utilised for calculating the condensation rate for drop wise condensation.

The inner surface of exhaust at a given time during short distance runs is occupied with droplets of different
random radii, which is called as droplet size distribution. The Rose equation can be utilised as a droplet size
distribution function [34],

N(r)dr = — ( - )n_l dr 2
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Where, N(r)dr is the number of droplets having radius r over surface area of 1 m?; n =1/3 is the exponent
constant; rp,, is the maximum droplet radius in m [35].
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Where, p is the water density, kg/m’; Hgg is the latent heat of evaporation/condensation for water, J/kg; K’ is the
resultant force on droplet which depends on the properties of gas and on the conditions (e.g. roughness) of
exhaust wall surface.

K = [~ R + (B + B~ — R’ *

Where, Ff represents the bonding between droplet and the steel wall which acts as an opposition to the drag
force and allows the droplet to stay in place; FJ represents the drag force exerted on the droplet by the flowing
gas; FY represents the surface tension and allows the droplet to remain attach to the exhaust wall and counters
the effect of gravity; F% represents the buoyancy for a suspended semi-circular droplet; Fg represents the gravity
force which tends to either detach the droplet from the top of the exhaust or cause it to slide down the sides of
the exhaust; Fg represents the downward drag force which rises due to the semi-circular shape of the droplets.
All these forces, for an individual droplet are represented in fig. 6.
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Where, k¢ is the coefficient of friction which is a function of inner exhaust surface roughness h such that when
h < 0.5 um and becomes constant when h > 0.5 um [36]; ¢ is the vapor-liquid surface tension, N/m; Cp is the
drag coefficient; v, is the velocity of gas, m/s; pg is the gas density, kg/m’; g is acceleration of gravity, 9.81
m/s”.

The total heat flux Q, W/m® for a unit area of the exhaust wall (1 m?) covered by a vast number of droplets
N(r) of numerous radii (sizes) can be evaluated by summation of the heat fluxes q(r) for droplets from minimum
radius to maximum radius, which can be written as [37],

Q= [™q(r)N(r)dr 5

Where I'yip, is the minimum radius of droplet, m in a unit area; q(r) is the amount of heat transferred through a
droplet of radius r [38].
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Where, T; is the saturation temperature; AT is the difference of saturation temperature between curved surface
and flat surface of the gas-liquid interface (sub cooling temperature) which is supposed as the minimum driving
force to form a droplet on the solid surface; Tig is the temperature at the surface of droplet; Ty is the temperature
at the outer exhaust wall; Ky, o is the thermal conductivity of water, W/m/K; Kk, is the thermal conductivity of
the exhaust wall, W/m/K; h; is the heat transfer coefficient at the droplet interface, W/m? /K; d,, is the thickness
of exhaust wall, m. All the temperature coefficients and temperature gradient is shown in fig. 6.



The total heat flux Q, temperature at the surface of droplet Tig, temperature of the bulk gas Tf and heat transfer
coefficient for the gas boundary layer hy, W/m’K can be used to calculate the condensation rate r, kgg/mz/ s as,

g_ 8
m = Q - hy(Ty-T7)
Hfg

The heat transfer coefficient hg can be related with the mass transfer coefficient Bg, my/s® for the gas boundary
layer as [39],

PgBs Cp
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Where, kg represent the thermal conductivity of gas, W/m'K. In presence of non-condensable gases, the
resistance to mass transfer of water vapor in the boundary layer can be rather very high. This makes the
coupling relation of heat and mass transfer and therefore they need to be solved simultaneously.

The size of droplet gradually increases due to condensation; this is simulated as a two dimensional problem in
order to avoid mathematical complications. When the size of the droplet reaches a maximum height, the droplet
detaches from the surface and a new droplet nucleates at its place; this is simulated by again setting the droplet
size from I'pax tO Iyin Tepresenting the start of new cycle again.

3.2. Corrosion model

Pitting corrosion of automotive exhaust (or anywhere) is a multi-process phenomenon involving two
simultaneous processes (i) fransport of species in the water droplet (ii) hydrolysis and electrochemical
reactions in pits resulting in pit growth. The corrosion model utilises the constants in the equation system taken
from the open literature referenced by Walton’s papers [40]. These constants include equilibrium constants,
reaction rate constants and diffusion coefficients.

The expression for the transport of species through the liquid droplet in the presence of chemical reactions
follows Fick’s species conservation equation [41]
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Where, the term on the left-hand side represents the rate of change of concentration with time t (accumulation)
and on the right-hand side the term D; represent the diffusion coefficient of species i, m?/s; ¢ represents the
droplet liquid potential; z; is the charge number for species i; Furbeth et al [42-44] reported that the permeability

of porous medium (such as scale) for transport of species can be written as !> where, € represents the situation
where the corrosion cavity is partially filled with gas or solid phase corrosion products such as hydrogen gas,
metal oxides or salts. The liquid porosity is the proportion of the cavity volume which is filled with the liquid
phase. When corrosion products are not present in the cavity, the porosity is equal to one [40]; v is the local

velocity of liquid in the droplets; R; is the total rate of reaction of species ‘i’ in solution (moles m™ s™).

The terms on the right-hand side of eq. 8 represent, respectively, migration, diffusion and convection
contributions to the flux. It is assumed, at first that the liquid in the droplets is stationary, and therefore no
convection term exists in the species conservation equation i.e. v = 0. Secondly, the migration is neglected as
well, and the electro neutrality equation is used instead i.e. };; z;. ¢; = 0. By considering the above assumptions
and substituting in eq. 8, the overall species conservation equation in the droplet containing only diffusion term
can be expressed as,
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The corroding media responsible for internal exhaust corrosion is a gas condensate, with high SO%~ and
CO3 content. The diffusion of these species results in the formation of pits on internal walls of exhaust. Two
types of chemical reactions are of interest in pits: (i) reactions in the pit solution (e.g. hydrolysis), and (ii)
electrochemical reactions at the metal-solution interface.

An example of hydrolysis reaction involves the hydrolysis of iron which can be written in the form of kinetic
expressions (e.g. 1% order kinetics) as,

Fe?* + H,0 «— Fe(OH)* + H*

It is assumed that the reaction in solution remains in equilibrium state and therefore kinetic equilibrium
expression can be used to express the reaction rate of species inside the pit solutions. One method for modelling
the equilibrium state in solution is to keep the governing equations in rate format but make the reaction rates
very fast. As long as reaction rates are fast, relative to rates of mass transport in water droplet, the reactions will
remain at equilibrium and the solution is independent of the kinetics assumed. In this research, the following
rate reaction expression, obtained from transition state theory for reactions near equilibrium, is used [40],

imax _Vik
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Where, 1y is the adjustable numerical rate parameter for reaction k (moles m ~ s ') and K is the equilibrium
constant for reaction k.

Examples of electrochemical reactions at the metal-solution interface are the hydrogen evolution (cathodic)
reaction and dissolution of the metal (anodic). A number of electrochemical reactions j at the metal surface take
place as,

Cathodic reactions:

Hydrogen reduction 2H* + 2e” > H,

Water reduction 2H,0 + 2e~ - H, + 20H~
Anodic reactions:

Electrochemical dissolution of iron Fe - Fe?* + 2e~

As a simplifying assumption, concentrations of species ‘i’ in the water droplet are assumed uniform in the cross-
width directions. This assumption will be valid when the length of the pit cavity is significantly greater than the
width (i.e. relatively deep pits). The governing transport equation for a deep cylindrical pit is derived by
modifying eq. 9 as,
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Where r is the radius of pit, m; N;, moles m?~ s~ is the rate of chemical reaction/mass transfer for each aqueous
species at the metal-solution interface which is obtained from the current density of the electrochemical
reactions using Faraday's law as,

jmax Vijipi
N = pjnp e 11(a)
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Where vj; is the stoichiometric coefficient of species ‘i’ in reaction j and n; is the stoichiometric coefficient of
electrons in reaction; iy , A/m” is the pitting current density resulting from an electrochemical reaction at the
metal solution interface and is generally expressed as a function of the corrosion potential and the
concentrations of some aqueous species (e.g. Butler-Volmer kinetics); d)Fe2+ is the potential of metal (volt). By

using pitting current density iy, it is possible to calculate pit depth as,
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Where, t; is the time to initiate the pit; t represents the total time over which ip; is calculated.

4. Model solution and validation

The nonlinearly coupled equations are solved simultaneously using finite difference method (FDM), together
with the boundary conditions and initial conditions. The species conservation and pitting current density
equations are discretized using a FDM. For a stable equilibrium solution of differential equations, an implicit
time discretization scheme is employed herein, and all nonlinear terms are linearized in variable space.

Although most of the equations described for the corrosion model are based on conventional methods however,
the domain of calculation had to be adapted to the mufflers corrosion scenario in order to take into account the
pitting and growth of water droplets with time.

In order to simulate the growth of water droplet due to condensation, the outer boundary of droplet is controlled
by varying the position of liquid-vapour interface. When the droplet first nucleates with minimum radius at the
muffler wall, the initial concentrations of corrosive species are set equilibria for clean freshly condensed water.
With the increasing radius of the droplet, the outer boundary of the computational domain is also enlarged
however upon reaching sufficient large size, the droplet detaches from the wall and the computational domain
minimises back to initial nucleation size. This domain minimisation does not alter the concentration of corrosion
species which remain same as before droplet detachment. The muffler mainly faces pitting corrosion, however if
the corrosion results in the formation of scales along with pitting, than the new droplet will nucleate on the
outside of exiting corrosion scale. In this case, the computational domain will have thickness equal to scale
thickness plus the new droplet size.

4.1. Condensation model validation

The condensation model can be employed to predict the condensation rate for various regimes of water droplets
under different environmental conditions. The model is validated by making some quantitative comparisons
between the experiments and the theoretical discussion of the previous sections. It was emphasised in
experimental section 2 that the wall temperature has a profound influence on the condensation rate specific to
constant conditions: Tf = 333 K, vg = 2 m/s. The comparison between experiment and model prediction of
condensation rate for decreasing wall temperature with respect to time is shown in fig. 7 (a). The mean of
experimental condensation rates for all three mufflers were compared with the simulated results from
condensation model. The model gave a good prediction of condensation rate with respect to changing wall
temperature. In a separate series of experiments, the effect of gas femperature on condensation rate was
analysed by now setting the low gas temperature Tbg = 313 K compared to high Tbg = 333 K which was set
previously in fig. 7 (a). For newly set low gas temperature T]f =313 K, the condensation rate was found to be
much higher because of near saturation conditions of vapours. This condition was simulated using model
showing a good agreement between predications and experimental results as shown in fig. 8 (a). Another set of
experiments was performed to analyse the effect of gas velocity on condensation rate by now setting high gas
velocity v = 15 m/s compared to low gas velocity vy = 2 m/s which was set previously. The results showed the
large condensation rate for high gas velocity due to gas drag force. The reason for high condensation rate with
increased gas velocity is mainly the spread of larger number of droplets over a surface area of meter square
however; the overall maximum size of droplets reduces. This condition was simulated and compared with
experimental curves showing a good agreement between the two as shown in fig. 9 (a).

4.2. Corrosion model validation

In most of muffler corrosion cases, the general pit depth is expected to increase linearly since the chemistry in
the fresh condensed droplets is ideal for the formation of low acidic pH condensate due SO2~, CO3 and Cl~ ions
diffusion in droplets. These species result in the formation of low pH electrolyte on metal surface and therefore
aggravating the pitting. From Figure 7 (b) which shows a typical simulation result for wall temperature values
specific to constant conditions: Tf =333 K, vg = 2 m/s, it can be seen that the pit depth increases linearly with
the passing time (hours). The ‘stair-case’ appearance of the pitting depth is due to the many droplets that form,
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Clearly when new freshly condensed droplets form, the pitting depth increases dramatically shown by vertical
step in each stair-case and then slowly shown by horizontal as droplets saturate with FeSO,, FeCO; and FeCl;,
leading to a slight pH increase. In the simulation, it was found that in the electrolyte droplet surrounding the pit,
both the concentration of Fe ions and pH become slightly higher with time compared to freshly condensed
droplet with low pH. For example at these conditions (Fig. 7 (b)) in case of muffler 3, the pH in fresh condensed
water is 3, which is also the boundary condition at the interface of the droplets. But at the metal surface and
inside the pit, the Fe ion concentration builds up due to corrosion reaction. Due to the corrosion process the pH
increases dramatically and reaches up to 4.5, which leads in stable slow growth of pit’s depth. [ TTITIIEITTTT]
simulated results in fig. 7 (b) showed a good agreement with the experimental results.

In a separate series of experiments, from fig. 8 (b), it follows that for a low gas temperature when Tbg was set at
low 313 K compared to previous high 333 K (in fig. 7 (b)), the resultant pit depth was observed to increase. Low
gas temperature accounts for higher condensation rate which results in increased pit depth. The reason for this is
probably that there is more fresh water available at higher condensation rate. Moreover, the saturation of
FeSO,, FeCO; and FeCl; is easier to achieve when there is less water (at lower condensation rate, the droplet
grows slower and is refreshed in less frequency). Both the experimental and simulation results for the above
conditions in fig. 8 (b) were in good agreement.

For another set of data shown in fig. 9 (b), the most visible influence of gas velocity on condensation regime can
be observed. It was found that by keeping constant gas temperature (e.g. Tbg =333 K), high gas velocity v,= 15
m/s compared to low gas velocity v,= 2 m/s accounts for large condensation rate however no significant change
in pitting rate (in terms of pit depth) is observed. At low velocity (e.g. 2 m/s), the vapour condenses by forming
stagnant droplets at the top wall of muffler. In these stagnant droplets, the pitting corrosion takes place in
accordance with the life-circle of water droplet i.e. droplets nucleate, grow and detach. However, for high gas
velocity (e.g. 15 m/s) the gas drag force increases which results in the transition of condensation regime from
stagnant to sliding droplet. It is worth nothing that the trend lines in fig. 9 (bUILILIIOTIE LTI COOTICT LTI I
[LLITIIL LI ¢ause in sliding case, the droplets slide along the top wall of the mufflers due to gas drag force
instead of falling due to gravity; therefore, the nucleation, growth and detachment cycle in form of “[IIIHLLILIT[]
now becomes straight line for high gas velocity. For the case of corrosion rate, it was observed that at high gas
velocity (15 m/s), [1CTTIOTT T CTITOT IO CIITOT IO T I T due to sliding behaviour of droplets become
covered with Fe;S,, Fe;C leading to overall increase in the space-averaged corrosion rate. However, the
corrected corrosion rate in terms of localised pit depth does not seem to be much affected by gas velocity. The
comparison between fig. 9(b) of high gas velocity (15 m/s) with fig. 7(b) of low gas velocity does not show a
significant difference in corrosion rate in terms of pit depth.

5. Conclusion

A predictive model for life assessment of automotive exhaust mufflers has been developed, which combines
following processes: drop wise condensation, liquid/gas equilibria and corrosion activity at metal surface. An
initial calculation developed the mechanics for the growth of water droplets and the chemistry inside the droplet
based on thermodynamic equilibrium at the liquid/gas interface. A second calculation produced the
electrochemical reaction kinetics at the steel surface and by taking into account the corrosive species transport
and corrosion reactions occurring inside the droplet. The model takes into account the most important
parameters in corrosion of muffler: wall temperature, combustion gas temperature and combustion gas velocity.
All the effects are described as mathematical equations which are strongly based on phenomena involved. The
model is able to predict the dropwise condensation rate and pit depth with respect to time.

A model experiment, using various conditions was performed in conjunction with the analysis. The experiment
showed good qualitative agreement with the trends predicted by theory.
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Figure 1. (a) Automotive exhaust muffler, corrosion sensors and condensation sensor (b) Outer wall of muffler
fitted with the condenser in which cooling fluid from cooling tower is circulated through the tubes.
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muffler with respect to accelerated testing time (b) The pit depth d(t), corresponding to pit density Np, cm”
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compared to low gas velocity 2 m/s in fig, 2 (b).



Force analysis on a single droplet

v

Muffler outer wall

el y
yv F;‘jT 'TFG

Fp

4
T3 hE

Temperature gradient in a single droplet

TY (outer wall temperature) T

v

\Muffler outer wall

YJV §

¥,

g
T (temperature at droplet

Tf (gas temperature) surface)

Figure 6. The drop wise condensation of water droplets on the top wall of muffler. The top left figure shows the
force analysis on a single droplet; the top right figure shows the temperature gradient in a single droplet.



(a)

(b)

325
1.8 ~
- 320
W L 315 €
(] -
e 17 v
E - 310 ©
2 Gas tem T® = 333K 8
= perature, T, = =
= - 305 @
._g ) Gas Velocity, v; = 2 m/s =
©
@ - 300 i
% —O— Experimental - figure 2 (a) %
= — Predicted =
0 R o
O 197 —— Avg. wall temperature 293 é
_»F 290
1.4 T T T T T T T 285
0 50 100 150 200 250 300 350
Accelerated testing time (h)
40
A Muffler 1 (ex perimental - figure 2(b))
O Muffler 2 (ex perimental - figure 2(b))
] Muffler 3 (ex perimental - figure 2(b)) p,?éo
— Muffler 1 (prediction) pc’j”/
304 — —— Muffler 2 (prediction) & -
————— Muffler 3 (prediction) /’J
~— -
5 5
= Gas temperature, Ty = 333 K (7 s
£ . R go g
T 20 q Gas Velocity, v, =2 m/s g gl
g 5 o
o) AF
o a
=
o

0 100 200 300 400

Accelerated testing time (h)
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Figure 8 (a). Condensation rate for condition of low gas temperature 313 K. (b) Corrosion rate (pit depth)
showing that the resultant pit depth increases with time. The trends show a good agreement between
predications and experimental results
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Figure 9 (a). Condensation rate for condition high gas velocity vy = 15 m/s compared to low gas velocity vy = 2
m/s showing high condensation rate with respect to time compared to low gas velocity (b) Corrosion rate (pit
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situation, now becomes straight line for high gas velocity



Table

Tables

Table 1. The exhaust gas composition for ecach muffler. The exhaust gases with these compositions were
allowed to pass through muffler 1, 2 and 3.

Exhaust gas composition
Compound
Muffler 1 (%) | Muffler 2 (%) | Muffler 3 (%)

Nitrogen 78 67 71
Carbon dioxide - 12 14
Water vapour <1 11 12
Oxygen 21 10 3
Trace elements - ~0.3 ~0.5
Nitrogen oxides - ~0.15 ~0.25
Carbon monoxide - <0.045 ~2
Hydrocarbons - <0.03 <0.25
Sulphur dioxide - <0.03 <0.2

Table 2. The condensate from three mufflers is collected to perform pH and chemical trace analysis (CTA). The
CTA is performed to evaluate the condensate composition showing that the condensate is composed of chloride
ions C17, sulphate ions SO3™, carbonate ions CO3 , and nitrate ions NO3.

Exhaust gas condensate composition

Muffler 1 Muffler 2 Muffler 3
pH ~6 pH 4 pH 3
[CI7] - [CI7] 75 ppm [CI7] 160 ppm
[S057] - [S037] 200 ppm [S057] 500 ppm
[CO5] - [CO3] 120 ppm [CO3] 300 ppm
[NO3] - [NO3] 6 ppm [NO3] 10 ppm




